Abstract

We study how signaling affects equilibrium outcomes and welfare in markets with adverse selection. Using data from an online credit market, we estimate a model of borrowers and lenders where low reserve interest rates can signal low default risk. Comparing a market with and without signaling relative to the benchmark case with no asymmetric information, we find that adverse selection destroys as much as 16% of total surplus, up to 95% of which can be restored with signaling. We also find the credit supply curves to be backward-bending for some markets, consistent with the prediction of Stiglitz and Weiss (1981).

JEL Code: D82, D83, G21, L15

KEYWORDS: Signaling, adverse selection, structural estimation

1 Introduction

Inefficiencies arising from adverse selection is a key feature in many markets, with examples ranging from “lemons” in used car markets (Akerlof, 1970) to toxic assets in financial markets (Morris and Shin, 2012). An important source of inefficiency in these markets lies in the inability of agents who are of “good” types (e.g., sellers of high-quality cars) to distinguish themselves from the...
“bad” (e.g., sellers of low-quality cars), resulting in markets to unravel completely in the worst-case scenario. The key insight of Spence (1973), however, is that when costly signaling devices are available, agents who have different marginal cost of signaling can be induced to take action that reveals their true type in equilibrium. Hence signaling can prevent the market from unraveling, with possibly large welfare implications.

Recently, there is a growing empirical literature in industrial organization that studies the effect of adverse selection on market outcomes and welfare. In this paper, we ask the natural next question, how signaling affects equilibrium outcomes and welfare in markets with adverse selection. While the theory of signaling has been applied to a wide range of topics in industrial organization, there is very little empirical work that quantifies the extent to which signaling affects market outcomes and welfare relative to a market with no signaling (i.e., pooling). An empirical analysis of welfare seems especially important given that whether signaling improves or decreases total welfare relative to pooling is theoretically ambiguous.

This paper studies these questions by building an estimable model of signaling in credit markets for unsecured loans using data from Prosper.com, an online peer-to-peer loan market. At least since the seminal work of Stiglitz and Weiss (1981), markets for unsecured loans have been considered to be classic examples of markets that suffer from potential adverse selection problems. A key feature of Prosper.com, however, is that each borrower can post a public reserve interest rate – the maximum interest rate that the borrower is willing to accept – when the borrower creates a listing on its Web site. In this paper, we provide evidence that the borrower’s reserve interest rate signals his creditworthiness and explore how signaling affects market outcomes and welfare.

Prosper.com is an online platform that matches potential borrowers with potential lenders with more than $280 million in funded loans (as of 2011). Established in 2006, it specializes in small-scale unsecured loans to individuals with a standardized loan repayment length of 36 months. The average funded loan is about $5,800 and debt consolidation is, by far, the most commonly stated purpose of the loan, accounting for about 46% of all listings.

While Prosper is a relatively young and small market, it is an ideal setting for investigating the effect of signaling on market outcomes and welfare. First, in this market we observe both the reserve interest rate choice of the borrower as well as the contract interest rate determined by the auction. The contract interest rate is the actual interest rate that the borrower faces in repayment and it is often lower than the reserve interest rate. Because the reserve interest rate should not

1 See Einav, Finkelstein and Levin (2010) for a survey and motivation of recent papers that go beyond testing the existence of information asymmetry.

2 For a brief discussion of how signaling equilibrium can be pareto dominated by a pooling equilibrium, see Mas-Colell, Whinston and Green (1995), Chapter 13.C, p.454.

3 We use borrower listing data from May through October of 2008 and the corresponding loan repayment data that goes until 2011. Our description of the institutional details pertain to this period.
affect the borrower’s repayment behavior conditional on the contract interest rate, we can isolate the signaling value (as opposed to moral hazard) of the reserve rate by studying how the reserve rate correlates with the default probability conditional on the contract interest rate. Second, transaction in this market takes place online and basically all of the information that lenders observe about the borrowers are also available to the econometrician, unlike in traditional markets. This feature makes us somewhat less concerned about unobserved heterogeneity than in other settings.

The idea that the reserve interest rates can signal the borrowers’ creditworthiness is quite intuitive in the particular market we study. Consider, for example, a borrower who is posting a high reserve rate – say, higher than the prime rate charged for typical bank loans. Then the lenders may infer that this borrower faces difficulty borrowing from outside sources, which also raises concerns about the repayment ability of the borrower. This will lead lenders to charge high interest to compensate for the high risk. Of course, this intuition is not a complete explanation of signaling, because there needs to be a countervailing force that induces the borrower to post a higher reserve interest rate (otherwise, all borrowers would want to post a low reserve rate). In the market we study, the natural countervailing force is the probability of obtaining a loan. As long as the funding probability increases as a function of the reserve rate, this can counteract the incentive for the borrower to post a low reserve rate. These two opposing incentives create different trade-offs for different borrowers, giving rise to the possibility of equilibrium dispersion in the reserve rate.

This rather simple intuition forms the basis of our model of the borrowers. In our model, borrowers are heterogeneous with regard to the cost of borrowing from outside sources and the ability to repay the loan. Given a trade-off between higher funding probability and higher interest rate, the heterogeneity in the cost of borrowing translates to the single-crossing condition. The low-cost types (e.g., borrowers with easy access to credit from local banks) value a decrease in the interest rate on the potential loan relatively more than an increase in the probability of obtaining a loan from Prosper. Conversely, the high–cost types (e.g., borrowers that do not have access to outside credit) would value an increase in the probability of obtaining a loan relatively more than a decrease in the interest rate. As long as the low–cost types also tend to have higher ability to pay back loans, a separating equilibrium can be sustained in which the low–cost types have incentives to post low reserve rates (and receive low interest loans with relatively low probability) and the high–cost types have incentives to post high reserve rates (and receive high–interest loans with relatively high probability).

In order to see whether the reserve interest rate functions as a signal in this market, we begin our analysis by providing results from a series of regressions. In our first set of regressions, we examine the effect of the reserve interest rate on the funding probability and on the actual interest rate conditional on being funded. The results indicate that a lower reserve rate leads to a lower funding probability, but it also leads to a more favorable contract interest rate on average even after
controlling for various observables and selection. This implies that borrowers indeed face a trade-off between the funding probability and the interest rate in setting the reserve rate. Moreover, this is consistent with the notion that there exists heterogeneity in how borrowers evaluate this trade-off: The considerable dispersion that we observe in the reserve interest rate suggests that those who post high reserve rates care more about the probability of being funded than about what interest they will pay and vice versa.4

In our second set of regressions, we examine whether there are any systematic differences between those who post high reserve rates and low reserve rates. We find that those who post high reserve rates are more likely to default than those who post low reserve rates, even after conditioning on the contract interest rate (the actual interest rate that the borrower pays on the loans). Given that the reserve rate should not directly affect the borrower’s repayment behavior conditional on the contract interest rate, this result suggests that there is informational value in the reserve rate. From the perspective of the lender, this implies that the reserve interest rate is informative about the creditworthiness of the borrower, i.e., the reserve rate is a signal of the borrower’s unobserved type.

Given the results of our preliminary analysis, we devote the second part of our paper to developing and estimating a structural model of the online credit market that agrees with the basic findings of the preliminary analysis. Our model of the borrowers allows for heterogeneity regarding creditworthiness and the cost of borrowing, which are privately known to the borrowers. The borrowers choose which interest rate to post, where the choice reveals their types in equilibrium. As for the supply side of the credit market, we model the lenders to be heterogeneous regarding their attitude toward risk. Each lender chooses whether to fund a listing or not, what interest rate to charge, and how much to lend. Once the loan is originated, the borrower faces monthly repayment decisions, which we model as a single-agent dynamic programming problem.

In terms of identification, the key primitives of the model that we wish to identify are the distribution of the borrowers’ types and the distribution of the lenders’ attitude toward risk. For identifying the borrowers’ type distribution, we exploit variation in the borrower’s reserve rate and how it is related to the default probability. In particular, we use the fact that the borrower’s type and the borrower’s reserve rate have a one-to-one mapping in a separating equilibrium. This feature is very useful, because it allows us to condition on a particular quantile of the borrower’s type distribution by simply conditioning on a quantile of the reserve rate distribution. Then the observed default probability at each quantile of the reserve rate distribution nonparametrically identifies the borrower’s type. The distribution of the lenders’ attitudes toward risk is also nonparametrically

4Note that it is probably safe to assume that many borrowers are aware of this trade-off: In a prominently displayed tutorial, Prosper informs the borrowers that setting a higher reserve rate increases the probability that the loan will be funded.
identified by relating the expected return of listings to their funding probability.

In our counterfactual experiment, we compare the equilibrium market outcome and welfare under three alternative market designs – a market with signaling, a market without signaling (i.e., pooling) and a market with no information asymmetry between borrowers and lenders. In particular, we simulate the credit supply curve under each of the three market designs by re-computing the lenders’ and borrowers’ behavior using the estimates of our structural model. As pointed out by Stiglitz and Weiss (1981), the credit supply curve in loan markets may be backward bending, or non-monotonic in the interest rate, because of adverse selection. The results of our counterfactual support their prediction: the credit supply curve becomes more backward bending under pooling when borrowers cannot signal their type with the reserve interest rate.

With respect to welfare, we find that the cost of adverse selection can be as much as 16% of the total surplus created under no asymmetric information. We also find that while signaling restores up to 95% of the difference in the surplus between pooling and no asymmetric information in some markets, it destroys welfare in others. Our results provide some empirical evidence regarding when signaling may improve welfare. Signaling seems to improve welfare most when the degree of adverse selection is severe, while it may destroy welfare when it is modest.

The empirical findings of this paper directly apply only to the market of Prosper.com and our model is tailored to the setting in which agents signal through the reserve rate. However, our basic methodology can be extended to study other markets in which signaling plays an important role, for example, pricing of new issues in IPO markets (e.g., Allen and Faulhaber, 1989), convertible debt recalls (Harris and Raviv, 1985), etc. As long as both the signal and the ex-post performance are observable, our model and identification strategy can be used to quantify the effect of signaling on market outcomes and welfare.

Related Literature Our paper is related to several strands of the literature. First, our study is related to the literature on adverse selection in credit markets. Since the seminal work of Stiglitz and Weiss (1981), there have been many studies testing for adverse selection in credit markets. Examples include Berger and Udell (1992), Ausubel (1999), Karlan and Zinman (2009), and Freedman and Jin (2010). While testing for adverse selection is important in its own right and is the first step for further analysis, estimating a model that explicitly accounts for information asymmetry...
try among the players allows researchers to answer questions regarding welfare and market design. Our paper goes in this direction.

The second strand of the literature to which our paper is related is the theoretical literature on signaling. Starting with the seminal work of Spence (1973), signaling has been applied to a wide range of topics. Even confined to applications in industrial organization, signaling has been applied to advertising (e.g., Milgrom and Roberts, 1986), entry deterrence (e.g., Milgrom and Roberts, 1982), war of attrition (Hörner and Sahuguet, 2011), as well as credit markets (e.g., Bester 1986, Milde and Riley 1988). Bester (1986) shows that borrowers can signal their type through the amount of collateral and Milde and Riley (1988) show that borrowers can signal through the loan amount. There is also a small theoretical literature on signaling in auctions, whereby a seller signals her private information through the reserve price (Cai, Riley and Ye, 2007, and Jullien and Mariotti, 2006, for example). The signaling mechanism that we consider in this paper is very similar to those studied in Cai, Riley and Ye (2007) and Jullien and Mariotti (2006).

In contrast to the large body of theoretical work, however, the empirical industrial organization literature on signaling is very thin. This is because identifying the effect of signaling often requires data on both the transaction and ex-post outcome, something that is hard to come by in industrial organization. In this sense, the data set of Prosper is ideal because it allows us to link the signal (i.e., the reserve rate) to the outcome (i.e., default). Moreover, the fact that we can link the two conditional on the contract interest rate allows us to isolate the signaling effect from moral hazard.

Our paper is also related to the large empirical literature on screening. In particular, Adams, Einav and Levin (2009) and Einav, Jenkins and Levin (2012) are two papers that are closely related to our paper. They consider how an auto insurer can screen borrowers using the down payment. They show that partly because of adverse selection, the lender’s expected return on the loan is non-monotone in the loan size. A key feature of our paper that is different from theirs is that our paper examines signaling while their paper examines screening. Moreover, our model of credit supply has a large number of heterogenous lenders while their model has a single lender.

7 Relatedly, Roberts (2013) shows how the reserve rate can be used to overcome unobserved heterogeneity in auctions. He studies an environment in which there is informational asymmetry between the players and the econometrician, but there is no asymmetric information between the sellers and the buyers.

8 Gedge, Roberts and Sweeting (2012) is one of the few papers on signaling in industrial organization. Outside of industrial organization, there are some empirical papers that examine signaling, for example, papers on the sheepskin effect (e.g., Hungerford and Solon, 1987). However, much of the literature have tended to focus on testing for the existence of signaling (a few exceptions are Gayle and Golan, 2012, and Fang, 2006).
2 Institutional Background and Data

2.1 Institutional Background

Prosper.com is an online peer-to-peer lending Web site that matches borrowers with lenders and provides loan administrative services for the lenders. Established in 2006, it has become America’s largest peer–to–peer lending marketplace, with more than a million members and over $280 million in loans. In this section, we describe how Prosper operates, with a particular emphasis on the auction mechanism used to determine the interest rate. For details on other aspects of Prosper, see Freedman and Jin (2010).

The sequence of events occurs according to the following timeline, (1) A borrower posts a listing, (2) Lenders bid, (3) Funding decision is made, and (4) The borrower makes monthly loan repayments. We explain each step in turn.

1. **Borrower posts a listing** A potential borrower who is interested in obtaining a loan through Prosper first creates an account with Prosper, who pulls the applicant’s credit history from Experian, a third-party credit-scoring agency. As long as the credit score is above a certain threshold, the borrower can create a listing on Prosper’s web site. Each listing contains information regarding the amount of loan requested, the reserve interest rate and the borrower’s characteristics. The loan amount and the reserve interest are both variables that the borrower chooses, subject to Prosper’s conditions and usury laws. During our sample period, the maximum loan amount allowed on Propser was $25,000 and the usary law maximum was 36%.

 The characteristics of the borrower that appear in the listing page include credit grade, home-ownership status, debt-to-income ratio, purpose of the loan, as well as any other additional information (text and pictures) that the borrower wishes to post. The credit grade, which corresponds to seven distinct credit score bins (AA, A, B, C, D, E, and HR), and home-ownership status are both verified by Prosper. Other information, such as debt-to-income ratio and purpose of the loan, is provided by the borrower without verification by Prosper. The most commonly stated purpose of the loan is debt consolidation, accounting for about 46% of all listings.

2. **Lenders Bid** Prosper maintains a list of active listings on its Web site for potential lenders. If a potential lender finds a listing to which she wishes to lend money, she may then submit a bid on the listing, similar to a proxy bid in online auctions. Each bid consists of an amount that the

9 The Online Appendix contains a more detailed description of the institutional background.
10 In a tutorial that walks borrowers through the listing process, Prosper advises borrowers to “Think of the interest you are paying on your next best alternative” when posting the reserve interest rate.
11 A credit grade of AA corresponds to a credit score of 760+, a grade of A corresponds to 720–759, B to 680–719, C to 640–679, D to 600–639, E to 540–599, and HR to 540–. The numerical credit score is not listed.
lender is willing to lend (typically a small fraction of the loan amount that the borrower requests),
and a minimum interest rate that the lender is willing to accept. The lender can submit a bid with
an amount anywhere between $50 and the borrower’s requested amount, but the modal bid amount
is $50. The lender can bid on any active listing at any time.

For each active listing, Prosper displays the fraction of the loan funded and the active interest
rate in addition to information regarding borrower characteristics, loan amount, and the reserve in-
terest rate. The active interest rate corresponds to the standing marginal bid in multi-unit auctions.
We will explain what the active interest is, in more detail below.

3. Funding Decision The auction used in Prosper is similar to a uniform–price auction with a
public reserve price. Using an example, we explain below how the terms of the loan are determined
and which bidders become lenders. Suppose a borrower creates a listing with a requested amount
of $10,000 and a reserve interest rate of 25%. Then, Prosper adds the listing to the set of currently
active listings. For simplicity, let us assume that the lenders can submit a bid amount of only $50.
At the time the lender submits her bid, she observes the fraction of the loan funded (e.g., 80% for
the left panel in Figure 1 and 100% for the right panel). For listings that have yet to attract enough
bids to reach the requested amount (i.e., fraction of loan funded is less than 100%) that is all she
observes about what other bidders are doing. In particular, she does not observe the interest rate
of each bid. As for listings that have already received enough bids to cover the requested amount,
(i.e., fraction of loan funded is equal to 100%) the lender observes the active interest rate, which is
the interest rate of the marginal bid that brings the supply of money over the requested amount. In
our example, this corresponds to the interest rate of the 200th bid when we order the submitted bids
according to their interest rate, from the lowest to the highest. Moreover, for fully funded listings
that are still active, the lender also observes the interest rate of the losing bids, i.e., the interest rate
of the 201st bid, 202nd bid, and so on. However, the lender does not observe the interest rate of
the bids below the marginal bid.

At the end of the bid submission period, listings that have attracted more bids than is necessary
to fund the full requested amount are funded. However, there are no partial loans for listings that
have failed to attract enough bids to fund the total requested amount. Hence the borrower would
receive no loan in the situation depicted in the left panel of Figure 1. In our sample, about 20% of
the borrowers whose loans are not funded relist on Prosper.12

As for fully funded listings, the interest rate on the loan is determined by the marginal bid,
and the same interest rate applies to all the lenders. In the second panel of Figure 1, the listing is
funded at 24.8% and the same rate applies to all lenders who submitted bids below 24.8%. In this

12Interestingly, borrowers that relist on Prosper do not adjust the reserve interest rate by much. The median borrower
who relists does not change the reserve rate at all. The average change in the reserve rate is about 1.2%.
4. Loan Repayments All loans originated by Prosper are unsecured and have a fixed loan length of 36 months. The borrower pays both the principal and the interest in equal installments over the 36-month period. If a borrower defaults, the default is reported to the credit bureaus, and a third–party collection agency is hired by Prosper to retrieve any money from the borrower.\footnote{We could not find data on the amount recovered through the collection agency.} From the perspective of the borrower, defaulting on a loan originated by Prosper is just like defaulting on any other loan, resulting in a damaged credit history.

2.2 Data

The data for our analysis come directly from Prosper.com. The data set is unique in the sense that virtually all the information available to potential lenders as well as the ex-post performance of the loans are observed to the researcher. We have data on the borrower’s credit grade, debt–to–income ratio, home ownership, etc., and additional text information that borrowers provide to lenders.\footnote{The only piece of information missing is the conversation that takes place between borrowers and potential lenders through the Prosper Web site.} We also have monthly repayment data of the borrowers.

Our data consist of all listings that were created from May to October of 2008 (and the corresponding loan repayment data for funded listings which go until the end of 2011). Note that all loans in our sample have either matured or ended in default. From this sample, we drop observations that were either withdrawn by the borrower, cancelled by Prosper, or missing parts of the
Table 1: Descriptive Statistics – Listings: This table presents summary statistics of listings posted on Prosper.com by credit grade. Debt/Income is the debt-to-income ratio of the borrower. Home Owner is a dummy variable that equals 1 if the potential borrower is a homeowner and 0, otherwise. Bid Count is the number of submitted bids by the lenders. Fund Pr. stands for the percentage of listings that are funded.

<table>
<thead>
<tr>
<th>Grade</th>
<th>Amount Requested</th>
<th>Reserve Rate</th>
<th>Debt/Income</th>
<th>Home Owner</th>
<th>Bid Count</th>
<th>Fund Pr.</th>
<th>Obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mean</td>
<td>sd</td>
<td>mean</td>
<td>sd</td>
<td>mean</td>
<td>sd</td>
<td>mean</td>
</tr>
<tr>
<td>AA</td>
<td>13,144.8</td>
<td>8,342.8</td>
<td>0.132</td>
<td>0.047</td>
<td>0.364</td>
<td>0.976</td>
<td>0.812</td>
</tr>
<tr>
<td>A</td>
<td>12,396.2</td>
<td>7,881.7</td>
<td>0.165</td>
<td>0.067</td>
<td>0.376</td>
<td>0.673</td>
<td>0.612</td>
</tr>
<tr>
<td>B</td>
<td>10,622.4</td>
<td>6,096.5</td>
<td>0.211</td>
<td>0.075</td>
<td>0.386</td>
<td>0.655</td>
<td>0.593</td>
</tr>
<tr>
<td>C</td>
<td>7,622.3</td>
<td>5,158.0</td>
<td>0.246</td>
<td>0.078</td>
<td>0.373</td>
<td>0.623</td>
<td>0.556</td>
</tr>
<tr>
<td>D</td>
<td>6,368.5</td>
<td>4,691.3</td>
<td>0.287</td>
<td>0.075</td>
<td>0.389</td>
<td>0.711</td>
<td>0.370</td>
</tr>
<tr>
<td>E</td>
<td>4,783.5</td>
<td>4,868.2</td>
<td>0.310</td>
<td>0.073</td>
<td>0.360</td>
<td>0.680</td>
<td>0.329</td>
</tr>
<tr>
<td>HR</td>
<td>4,350.7</td>
<td>4,599.4</td>
<td>0.315</td>
<td>0.069</td>
<td>0.308</td>
<td>0.641</td>
<td>0.221</td>
</tr>
<tr>
<td>All</td>
<td>6,603.9</td>
<td>5,937.8</td>
<td>0.274</td>
<td>0.089</td>
<td>0.354</td>
<td>0.679</td>
<td>0.393</td>
</tr>
</tbody>
</table>

We are left with a total of 35,241 listings, of which 5,571 were funded. Our Online Appendix contains a more detailed description of our data construction.

Table 1 reports sample statistics of the listings by credit grade. The mean requested amount is reported in the first column, and it ranges from a high of more than $13,000 for AA listings to a low of less than $5,000 for HR listings. In columns 2 through 4, we report the average reserve interest rate, the debt-to-income ratio, and the home-ownership status by credit grade. In column 5, we report the bid count, which is the average number of bids submitted to a listing, and in column 6, we report the funding probability.

In Figure 2, we present the distribution of the reserve rate across different credit grades. As expected, the reserve rate is higher for worse credit grades. One important thing to note is that there is a spike at 36% for credit grades B and below. This is because 36% was the usury law maximum for our sample. As the main focus of our analysis is on the reserve rate and the extent to which it can be used as a signal of the creditworthiness of the borrower, variation in the reserve rate is crucial for our analysis. The fact that there is little variation in the reserve rate among listings for credit grades D and below implies that listings in these categories are not very informative about the signaling value of the reserve interest rate. As a consequence, we focus on the results from the top four credit grades (AA, A, B and C) in presenting some of our analysis below.

In Figure 3, we plot the cumulative distribution functions of the contract interest rate (r) conditional on the reserve interest rate (s), by credit grade. In the top left panel, we report two distributions for credit grade AA, one corresponding to $s = 10\%$ and the other corresponding to $s = 20\%$. Given that almost no borrowers in credit grade AA post a reserve rate of 30% or more (see Figure 2), we only report the distribution for s equal to 10% and 20% for credit grade AA. The other panels of Figure 3 plot similar distributions for credit grades A – HR and $s = 10\%, 20\%, 30\%$.
Figure 2: Distribution of Reserve Interest Rate by Credit Grade – We show the distribution of reserve interest rate by credit grade. The reserve interest rate is capped at 36% because of the usury law.

Figure 3: Distribution Function of Contract Interest Rate Given Reserve Interest Rate, by Credit Grade – The Figure plots the distribution of contract interest rate \((r) \) conditional on reserve interest rate \((s) \). For \(s = 10\% \), 20\%, and 30\%, the distribution is computed by pooling funded listings with \(s \in [s - 1, s + 1] \). For \(s = 36\% \), the distribution is computed by pooling funded listings with \(s \in [34\%, 36\%] \).
Figure 4: Distribution of Bid Amount – The figure shows the distribution of bid amount for each credit grade. Bids with amount exceeding $250 are not shown. The fraction of these bids is about 3.5%.

and 36%. Overall, the distributions of contract interest rate given s lie to the right of s_0 whenever $s_0 \leq s$. This suggests that borrowers who post low reserve rates are more likely to obtain low interest. In the next section, we show that this relationship is true even after controlling for the fact that r is right-censored at s.

In Figure 4, we report the distributions of the bid amount, again by credit grade. The fraction of lenders who bid $50 exceeds 70% across all credit grades, and the fraction of lenders who bid $100 is more than 10% in all credit grades. Hence, more than 80% of lenders bid either $50 or $100 for a given loan. We also find that a small fraction of lenders bid $200, but rarely beyond that. These observations motivate us to formulate the potential lenders’ amount choice as a discrete-choice problem in our model section, where lenders choose from \{50, 100, 200\} rather than from a continuous set.

Table 2 reports sample statistics of listings that were funded, which is a subset of the set of listings. Note that the mean loan amount reported in Table 2 is smaller than the mean requested amount shown in Table 1, which is natural given that smaller listings need to attract a smaller number of bids in order to get funded. Also, note that the average bid count in Table 2 is higher than in Table 1, for the obvious reason that listings need to attract sufficient number of bids to get funded: Recall that there is no partial funding for listings that fail to attract enough bids to cover the requested amount.

For each loan originated by Prosper, we have monthly data regarding the repayment decisions of the borrower, i.e., we observe whether the borrower repaid the loan or not every month, and whether the borrower defaulted. In the first column of Table 3, we report sample statistics regarding the default probability by credit grade. The average default probability is lowest for AA loans at

\footnote{Given that the contract interest is always less than the reserve interest, the distribution $F(r|s)$ is truncated above at s, by construction.}
Table 2: Descriptive Statistics – Loans: This table reports the summary statistics of loans. Contract Rate is the interest rate charged to the borrower. Debt/Income refers to the debt-to-income ratio of the borrower. Home Owner is a dummy variable that equals 1 if the potential borrower is a homeowner and 0, otherwise. Bid Count is the number of submitted bids by the lenders.

<table>
<thead>
<tr>
<th>Grade</th>
<th>Amount Requested (mean)</th>
<th>Reserve Rate (mean)</th>
<th>Contract Rate (mean)</th>
<th>Debt/Income (mean)</th>
<th>Home Owner (mean)</th>
<th>Bid Count (mean)</th>
<th>Obs</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>9,710</td>
<td>7,384</td>
<td>0.131</td>
<td>0.096</td>
<td>0.21</td>
<td>0.80</td>
<td>131.5</td>
</tr>
<tr>
<td>A</td>
<td>8,723</td>
<td>6,626</td>
<td>0.165</td>
<td>0.127</td>
<td>0.23</td>
<td>0.55</td>
<td>114.0</td>
</tr>
<tr>
<td>B</td>
<td>7,347</td>
<td>4,858</td>
<td>0.216</td>
<td>0.164</td>
<td>0.27</td>
<td>0.56</td>
<td>100.9</td>
</tr>
<tr>
<td>C</td>
<td>4,687</td>
<td>2,998</td>
<td>0.247</td>
<td>0.181</td>
<td>0.25</td>
<td>0.48</td>
<td>53.4</td>
</tr>
<tr>
<td>D</td>
<td>3,578</td>
<td>2,380</td>
<td>0.280</td>
<td>0.210</td>
<td>0.24</td>
<td>0.26</td>
<td>44.7</td>
</tr>
<tr>
<td>E</td>
<td>1,890</td>
<td>1,187</td>
<td>0.339</td>
<td>0.291</td>
<td>0.22</td>
<td>0.26</td>
<td>47.6</td>
</tr>
<tr>
<td>HR</td>
<td>1,690</td>
<td>1,288</td>
<td>0.339</td>
<td>0.300</td>
<td>0.20</td>
<td>0.17</td>
<td>17.6</td>
</tr>
<tr>
<td>All</td>
<td>5,821</td>
<td>5,285</td>
<td>0.233</td>
<td>0.179</td>
<td>0.24</td>
<td>0.47</td>
<td>80.0</td>
</tr>
</tbody>
</table>

Table 3: Descriptive Statistics – Default Probability and Internal Rate of Return (IRR): This table reports the default probability and IRR of the loans originated by Prosper. We present the average IRR, the standard error, and the quantiles of the distribution.

<table>
<thead>
<tr>
<th>Grade</th>
<th>Default Prob.</th>
<th>Mean IRR (mean)</th>
<th>sd</th>
<th>10%</th>
<th>25%</th>
<th>50%</th>
<th>75%</th>
<th>90%</th>
<th>Obs</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>0.149</td>
<td>-0.011</td>
<td>0.283</td>
<td>-0.449</td>
<td>0.061</td>
<td>0.082</td>
<td>0.110</td>
<td>0.132</td>
<td>755</td>
</tr>
<tr>
<td>A</td>
<td>0.211</td>
<td>-0.025</td>
<td>0.331</td>
<td>-0.767</td>
<td>0.072</td>
<td>0.094</td>
<td>0.135</td>
<td>0.181</td>
<td>755</td>
</tr>
<tr>
<td>B</td>
<td>0.297</td>
<td>-0.074</td>
<td>0.404</td>
<td>-0.871</td>
<td>0.229</td>
<td>0.136</td>
<td>0.169</td>
<td>0.211</td>
<td>1,023</td>
</tr>
<tr>
<td>C</td>
<td>0.309</td>
<td>-0.060</td>
<td>0.413</td>
<td>-0.871</td>
<td>0.211</td>
<td>0.135</td>
<td>0.196</td>
<td>0.256</td>
<td>1,285</td>
</tr>
<tr>
<td>D</td>
<td>0.321</td>
<td>-0.036</td>
<td>0.424</td>
<td>-0.865</td>
<td>0.192</td>
<td>0.153</td>
<td>0.231</td>
<td>0.316</td>
<td>1,022</td>
</tr>
<tr>
<td>E</td>
<td>0.372</td>
<td>0.000</td>
<td>0.475</td>
<td>-0.861</td>
<td>-0.315</td>
<td>0.249</td>
<td>0.345</td>
<td>0.394</td>
<td>392</td>
</tr>
<tr>
<td>HR</td>
<td>0.439</td>
<td>-0.112</td>
<td>0.532</td>
<td>-0.886</td>
<td>-0.800</td>
<td>0.202</td>
<td>0.345</td>
<td>0.398</td>
<td>339</td>
</tr>
<tr>
<td>All</td>
<td>0.286</td>
<td>-0.046</td>
<td>0.402</td>
<td>-0.858</td>
<td>-0.100</td>
<td>0.121</td>
<td>0.187</td>
<td>0.281</td>
<td>5,571</td>
</tr>
</tbody>
</table>

14.9%, while it is highest for HR loans at 43.9%. Table 3 also reports the mean and the quantiles of the internal rate of return (IRR) of the loans. The average IRR for all listings is -4.6%, and it is negative in all credit grades except grade E, whose average IRR is 0%. The IRR for our sample period is generally low. These low returns may reflect the fact that our sample coincides with the period of economic downturn during the financial crisis. (Note that the return on the S&P was at -37% during 2008). It may also reflect the fact that lenders were not fully aware of the creditworthiness of the pool of borrowers on Prosper.

Finally, Table 4 reports the summary statistics of the lenders. We find that lenders fund, on

If we denote the (monthly) IRR by R, then R is the interest rate that equalizes the loan amount to the discounted sum of the stream of actual monthly repayments. In Table 3, we report the annualized IRR.

There is evidence that loans originated after the end of our sample seem to be doing better. Using the subset of loans that originated right after Prosper resumed operation in 2009, we find that the average IRR was 1.1%, which is significantly higher than -4.6%. Moreover, this estimate of 1.1% is conservative because some lenders had not finished repaying by the day we retrieved our data.

Freedman and Jin (2010) study lender learning where lenders learn about the creditworthiness of borrowers over time.
Table 4: Descriptive Statistics – Lender Portfolio Characteristics: This table reports the summary statistics of the lender’s portfolio. We present the number of loans that a lender owns in her portfolio, the total amount of loans lent by the lender, average IRR of loans in a portfolio, the standard deviation of IRR of the loans within a portfolio for the full sample, and the standard deviation of IRR of the loans within a portfolio for the lenders who own more than 10 loans.

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>sd</th>
<th>5%</th>
<th>25%</th>
<th>50%</th>
<th>75%</th>
<th>95%</th>
<th>Obs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portfolio Size (# of Loans)</td>
<td>17.5</td>
<td>42.4</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>16</td>
<td>68</td>
<td>68</td>
</tr>
<tr>
<td>Portfolio Size ($)</td>
<td>1,325</td>
<td>5,314</td>
<td>50</td>
<td>126.6</td>
<td>350</td>
<td>1000</td>
<td>4950</td>
<td>29,176</td>
</tr>
<tr>
<td>Average IRR</td>
<td>-0.041</td>
<td>0.166</td>
<td>-0.332</td>
<td>-0.076</td>
<td>-0.005</td>
<td>0.039</td>
<td>0.144</td>
<td>29,176</td>
</tr>
</tbody>
</table>

average, 17.5 loans with a total portfolio size of about $1,325. The median lender funds 6 loans and a total of $350. This suggests that the lenders do not invest a lot of money on Prosper, in general. The mean IRR of a lender’s portfolio is about -4.1% with a standard deviation of 0.166.

3 Evidence of Signaling Through the Reserve Rate

In this section, we provide some reduced-form evidence that the borrower’s reserve interest rate serves as a signaling device. In particular, we first show evidence that suggests that raising the reserve rate (1) increases the funding probability; (2) increases the contract interest rate; and (3) increases the default probability. We next argue that, taken together, these results suggest that the reserve rate serves as a signal.

While the baseline results that we present below are based on a relatively parsimonious specification of the reduced form, the Online Appendix contains results from richer specifications with interactions of covariates as well as specifications with additional covariates, such as text information and more detailed credit information of the borrowers. The baseline results we report below are broadly consistent with the results of these alternative specifications.

Funding Probability In order to analyze the effect of the reserve rate on the funding probability, we run a Probit model as follows:

\[
\text{Funded}_j = 1\{\beta_s s_j + \mathbf{x}_j' \mathbf{\beta}_x + \epsilon_j \geq 0\},
\]

(1)

where Funded\(_j\) is a dummy variable for whether listing \(j\) is funded or not, \(s_j\) is the reserve rate and \(\mathbf{x}_j\) is a vector of controls that include the requested amount, the debt–to–income ratio, a dummy variable for home ownership, the credit grade, calendar month, and hour of day the listing was created.

The first column of Table 5 reports the results of this regression. The coefficient that we are
interested in is the one on the reserve rate. As reported in the first row, the coefficient is estimated to be 2.13 and it is statistically significant. In terms of the marginal effect, a 1% increase in s_j is associated with about a 0.32% increase in the funding probability.

Contract Interest Rate Next, we run the following Tobit regression to examine the effect of the reserve rate on the contract interest rate:

$$ r^*_j = \beta_s s_j + \mathbf{x}_j' \mathbf{\beta}_x + \varepsilon_j, \quad (2) $$

$$ r_j = \begin{cases}
 r^*_j & \text{if } r^*_j \leq s_j \\
 \text{missing} & \text{otherwise}
\end{cases} $$

In this expression, r_j denotes the contract interest rate, r^*_j is the latent contract interest rate, s_j is the reserve rate, and \mathbf{x}_j is the same vector of controls as before. The first equation relates the latent contract interest rate to the reserve rate and other listing characteristics. r^*_j is interpreted as the latent interest rate at which the loan is funded in the absence of any censoring. The second equation is the censoring equation, which accounts for the fact that the contract interest rate r_j is always less than the reserve rate, s_j. Note that if we were to run a simple OLS regression of r_j on s_j and \mathbf{x}_j, the estimate of β_s would be biased upwards because the mechanical truncation effect would also be captured in β_s.

We report the results from this regression in the second column of Table 5. As reported in the first row, we estimated β_s to be positive and significant, which seems to suggest that a lower reserve interest rate leads to a lower contract interest rate, consistent with our hypothesis. As we discuss next, borrowers who post high reserve rates are relatively less creditworthy. If we take this as given, the results of regression (2) seem to suggest that lenders charge higher interest to riskier borrowers.

In addition to the Tobit model above, we also estimated a censored quantile regression model (see, e.g., Powell, 1986) using the same specification as equation (2). The quantile regression allows us to test whether a similar relationship between r^*_j and s_j that we find for the mean holds for different quantiles. The results of the quantile regressions are qualitatively similar.\(^{19}\) The results seem to imply that $F(r^*|s)$ first order stochastically dominates $F(r^*|s')$ for $s \geq s'$ (See also Figure 3).

The results of regressions (1) and (2) suggest that a borrower faces a trade-off in setting the reserve price, i.e., the borrower must trade-off the increase in the probability of acquiring a loan with the possible increase in the contract interest. Note that it is probably safe to assume that many borrowers are actually aware of this trade-off: In a prominently displayed tutorial, Prosper

\(^{19}\)The results are available on request.
<table>
<thead>
<tr>
<th></th>
<th>(1) Funded</th>
<th>(2) Contract Rate</th>
<th>(3) Default</th>
<th>(4) Rate of Return</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reserve rate</td>
<td>2.1368***</td>
<td>0.6834***</td>
<td>2.8584***</td>
<td>-0.5919***</td>
</tr>
<tr>
<td></td>
<td>(0.0263)</td>
<td>(0.0145)</td>
<td>(0.7256)</td>
<td>(0.1313)</td>
</tr>
<tr>
<td>Contract rate</td>
<td></td>
<td>3.2375***</td>
<td></td>
<td>0.0540</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.6507)</td>
<td></td>
<td>(0.1372)</td>
</tr>
<tr>
<td>Amount</td>
<td>-0.0001***</td>
<td>1.12E-06***</td>
<td>3.49E-05***</td>
<td>-4.51E-06***</td>
</tr>
<tr>
<td></td>
<td>(0.0000)</td>
<td>(6.12E-06)</td>
<td>(6.74E-06)</td>
<td>(1.24E-06)</td>
</tr>
<tr>
<td>Debt / income</td>
<td>-0.7971***</td>
<td>0.0731***</td>
<td>0.0528</td>
<td>-0.0314</td>
</tr>
<tr>
<td></td>
<td>(0.0015)</td>
<td>(0.0037)</td>
<td>(0.0713)</td>
<td>(0.0197)</td>
</tr>
<tr>
<td>Home owner</td>
<td>-0.1513***</td>
<td>0.0137***</td>
<td>0.1400***</td>
<td>-0.0471***</td>
</tr>
<tr>
<td></td>
<td>(0.0004)</td>
<td>(0.0018)</td>
<td>(0.0633)</td>
<td>(0.0117)</td>
</tr>
<tr>
<td>Grade</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>3.6468***</td>
<td>-0.3013***</td>
<td>-0.3966**</td>
<td>0.0595</td>
</tr>
<tr>
<td></td>
<td>(0.0044)</td>
<td>(0.0061)</td>
<td>(0.2179)</td>
<td>(0.0402)</td>
</tr>
<tr>
<td>A</td>
<td>3.0727***</td>
<td>-0.2670***</td>
<td>-0.3208**</td>
<td>0.0475</td>
</tr>
<tr>
<td></td>
<td>(0.0033)</td>
<td>(0.0055)</td>
<td>(0.1932)</td>
<td>(0.0366)</td>
</tr>
<tr>
<td>B</td>
<td>2.5681***</td>
<td>-0.2347***</td>
<td>-0.1516</td>
<td>0.0224</td>
</tr>
<tr>
<td></td>
<td>(0.0022)</td>
<td>(0.0046)</td>
<td>(0.1492)</td>
<td>(0.0320)</td>
</tr>
<tr>
<td>C</td>
<td>1.8743***</td>
<td>-0.1862***</td>
<td>-0.1398</td>
<td>0.0380</td>
</tr>
<tr>
<td></td>
<td>(0.0014)</td>
<td>(0.0038)</td>
<td>(0.1233)</td>
<td>(0.0288)</td>
</tr>
<tr>
<td>D</td>
<td>1.2754***</td>
<td>-0.1329***</td>
<td>-0.1825</td>
<td>0.0636**</td>
</tr>
<tr>
<td></td>
<td>(0.0011)</td>
<td>(0.0034)</td>
<td>(0.1135)</td>
<td>(0.0272)</td>
</tr>
<tr>
<td>E</td>
<td>0.5022***</td>
<td>-0.0499***</td>
<td>-0.3949***</td>
<td>0.1155***</td>
</tr>
<tr>
<td></td>
<td>(0.0014)</td>
<td>(0.0036)</td>
<td>(0.1271)</td>
<td>(0.0296)</td>
</tr>
<tr>
<td>Observation</td>
<td>35,241</td>
<td>35,241</td>
<td>91,939</td>
<td>5,571</td>
</tr>
<tr>
<td>R^2</td>
<td>0.2827</td>
<td></td>
<td></td>
<td>0.0224</td>
</tr>
<tr>
<td>Likelihood</td>
<td>-1,137</td>
<td>-4,805</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5: Reduced Form Analysis - Funding Probability, Contract Interest Rate and Repayment Behavior: The first column reports the estimated coefficients of the Probit model (expression (1)). The unit of observation is a listing. The dependent variable is an indicator variable that equals one if the listing is funded and zero, otherwise. The second column reports the estimated coefficients of the Tobit model (expression (2)). The unit of observation is the contract interest rate charged to the borrower. The third column reports estimated coefficients from the panel Probit model (expression (3)). The unit of observation is a loan - period. The dependent variable is an indicator variable that equals one if the loan ends in default at period t. The fourth column presents estimated coefficients of the OLS model (expression (4)). In this model, the unit of observation is a funded loan. In addition to the independent variables shown in the table, we also control for month dummies, day-of-the-week dummies, and hour-of-the-day dummies in all of the regressions. Standard errors are robust-heteroskedasticity-consistent and clustered at the loan level. They are presented in parentheses below the coefficients.
informs the borrowers that setting a higher reserve rate increases the probability that the loan will be funded. Given the dispersion in the reserve rate (See Figure 2), it is natural to think that there is unobserved borrower heterogeneity that induces borrowers to weigh the trade-off differently. For example, if borrowers are heterogeneous with respect to the cost of obtaining credit from outside sources, borrowers who have low cost will tend to post low reserve rates, while those who have high cost will post high reserve rates, giving rise to dispersion in the reserve rate.

Repayment Behavior We now explore the extent to which borrowers who post high reserve rates are similar to or different from those who post low reserve rates in terms of their ability to pay back. In order to do so, we first run a panel Probit of an indicator variable for default on observable characteristics of the loan as well as the reserve rate:

$$\text{Default}_{jt} = 1\{\beta_s s_j + \beta_r r_j + x'_j \beta_x + \mu_t + \alpha_j + \varepsilon_{jt} \geq 0\},$$ \hspace{1cm} (3)

where Default$_{jt}$ denotes a dummy variable that takes a value of 1 if borrower j defaults on the loan at period t, μ_t is a period-t dummy, and α_j is a borrower random-effect. The coefficient β_s captures the relationship between the reserve interest rate and the default probability. Note that because we control for the contract interest rate (r_j) in the regression, the effect captured by β_s is purely due to selection. In other words, β_s is not picking up the effect of moral hazard given that the reserve rate should not directly affect the behavior of the borrower once we condition on the contract interest rate.

The parameter estimates obtained from this regression are shown in the third column of Table 5. The coefficient associated with the reserve interest rate is positive and significant, with $\beta_s = 1.54$. In terms of the marginal effect, a 1% increase in s_j is associated with about a 1.25% increase in the default probability. This implies that borrowers who post higher reserve interest rates tend to default more often, which is consistent with the notion that the reserve rate is informative about the type of the borrowers, i.e., the reserve interest rate can be used as a signal of the creditworthiness of the borrower. In the second row, we also report our estimates of the coefficient on the contract interest rate and the coefficient on the requested amount. We find that both coefficients are positive and statistically significant. The positive coefficient on the contract interest rate may be capturing moral hazard – higher interest tends to increase the probability of default. The positive coefficient on the amount can be a result of either signaling or moral hazard. Borrowers who request a bigger loan may be less creditworthy, or a bigger loan may induce borrowers to default more often because of higher interest payments. The former explanation would be consistent with signaling, and the latter would be consistent with moral hazard.\footnote{The borrower’s choice of the loan size is an interesting issue, but it is hard to tease out moral hazard and adverse selection. That is one reason why our paper focuses on the borrower’s choice of the reserve rate. Note, however, that}
We now wish to examine how the reserve rate relates to the borrower’s repayment behavior from the perspective of the lender. In order to do so, we analyze how the IRR is related to the reserve interest rate by estimating the following model:

\[
IRR_j = \beta_s s_j + \beta_r r_j + \mathbf{x}_j \mathbf{\beta}_x + \varepsilon_j, \tag{4}
\]

where \(IRR_j\) is the internal rate of return of loan \(j\) and \(\mathbf{x}_j\) is the same vector of observable characteristics as before. As with our discussion of regression (3), the coefficient on \(s_j\) captures the pure selection effect given that we control for the contract interest rate in the regression.

The parameter estimates obtained from this regression are shown in the fourth column of Table 5. As expected, the coefficient on \(s_j\) is negative and significant (\(\beta_s = -0.59\)). This is consistent with the results of regression (3), where we examined the relationship between \(r_j\) and the default probability. The coefficient on \(r_j\) is positive, but not statistically significant. This may be due to moral hazard.

Interpretation of the Results Taken together, our regression results seem to indicate that (1) there is a trade-off in setting the reserve rate, i.e., a trade-off between a larger funding probability and a higher contract interest rate; (2) borrowers are heterogeneous with respect to how they evaluate this trade-off; (3) those who post high reserve rates tend to be relatively less creditworthy and those who post low reserve rates tend to be relatively more creditworthy; and (4) the lenders anticipate this and charge higher interest to riskier borrowers who post high reserve rates. These results are informative about how signaling is sustained in equilibrium: “high cost” types, who have high cost of borrowing from outside sources are more willing to sacrifice a favorable interest rate for a bigger probability of being funded, while the opposite is true of the “low cost” types. Because borrowers who post high reserve rates default relatively more often than borrowers who post low reserve rates, “high cost” types are also less creditworthy while “low cost” types are more creditworthy. Hence borrowers who are “low cost” and creditworthy prefer \{low interest, low probability of receiving a loan\} to \{high interest, high probability of receiving a loan\}, and vice versa. This prevents “bad” types from mimicking “good” types and sustains separation of types through signaling.

While the results that we present in this section correspond to relatively parsimonious specifications of the reduced form, the results are quite robust. As we discussed before, the Online Appendix contains results from various alternative specifications which are qualitatively similar to those presented above. For example, we obtain similar results when we restrict the sample only to

we are *not* ruling out the possibility that the loan amount can also be a signal. See section 4.4 for more details. For an analysis of the loan size and down payment in the context of subprime lending in used–car markets, see Adams, Einav, and Levin (2009) and Einav, Jenkins, and Levin (2012).
the set of listings posted by borrowers for the purpose of consolidating debt. In addition, there are papers using additional graphical and textual data that report similar effect of the reserve rate on various outcome variables. For example, Ravina (2008) augments the Prosper data with the perceived attractiveness of the borrowers using the photos that borrowers post and Freedman and Jin (2010) includes variables such as social ties of the borrower, etc. Their findings are reassuring in the sense that inclusion of these additional variables do not change much the estimated coefficients of the reserve rate (see Table 5 of Freedman and Jin, 2010 and Table IV of Ravina, 2008). While there may still be omitted variables in our specification, we think that the bias arising from them are limited.

4 Model

In this section, we develop a model of the borrowers and the lenders who participate in Prosper, which we later take to the data. Our model has three parts. The first part of our model concerns the reserve interest rate choice of the borrowers, the second part concerns the lenders’ bidding behavior and the third part of our model pertains to the borrowers’ repayment behavior. We collect and discuss our modeling choices and assumptions at the end of this section.

4.1 Borrowers

Borrower Repayment We first describe the repayment stage of the borrower’s decision problem and work our way backwards. We model the repayment behavior of the borrower as a sequential decision of 36 (= T) months, which is the length of the loans that Prosper originates. We write the terminal decision of the borrower at period T as follows:

\[
\begin{cases}
\text{full repayment: if } u_T(r) + \varepsilon_T \geq D(\varphi) \\
\text{default: otherwise,}
\end{cases}
\]

where \(u_T(r) + \varepsilon_T \) denotes the period utility of the borrower if he repays the loan in full, \(r \) denotes the interest rate on the loan, and \(\varphi \) denotes the (unobserved) type of the borrower that determines the likelihood of repaying the loan. While there are many ways to interpret \(\varphi \) and \(D(\cdot) \) — e.g., as unobserved liquid asset/wealth of the borrower — we adopt the interpretation of \(D(\varphi) \) as the default cost of a borrower whose type is equal to \(\varphi \). That is, the borrower compares the utility of repaying the loan \((u_T(r) + \varepsilon_T) \) with the cost of default \((D(\varphi)) \), choosing to repay the loan if and only if the former is greater than the latter.

We assume without loss of generality that \(D(\varphi) \) is monotonically decreasing in \(\varphi \), i.e., the disutility of defaulting is larger for borrowers with higher \(\varphi \). Hence, borrowers with high \(\varphi \) are
“good” types who value avoiding default and maintaining a good credit history. Note that our interpretation of φ is only one of many.\footnote{\varphi is the unobserved type of the borrower that affects the propensity to make repayments. The exact interpretation of φ is not very important for our purposes.} In the Online Appendix, we provide an isomorphic model in which φ is interpreted as wealth/asset of the borrower.

We assume φ to be independent of ε_T, conditional on observables. The conditional independence of ε_T and φ may appear to be a very strong assumption, but mean independence is actually without loss of generality. To see this, if $E[\varepsilon_T|\varphi] \neq 0$, we can subtract $E[\varepsilon_T|\varphi]$ from both sides of equation (5) and by appropriately redefining $D(\cdot)$ and ε_T, we have an observationally equivalent model with $E[\varepsilon_T|\varphi] = 0$. This is possible because we allow $D(\cdot)$ (or equivalently, the distribution of φ) to be nonparametric.\footnote{Intuitively, one can think of this as loading all of the “systematic” component on φ. In other words, if $E[\varepsilon_T|\varphi] \neq 0$, we can load on φ the part of ε_T that is correlated with φ.} While mean independence is not the same as independence, we think that this alleviates some of the concerns regarding our assumption. We come back to this point at the end of this section (Section 4.4).

Now let V_T denote the expected utility of the borrower at the beginning of the final period T, defined as $V_T(r, \varphi) = E[\max\{u_T(r) + \varepsilon_T, D(\varphi)\}]$. Then, the decision of the borrower at period $t < T$ is as follows:

\[
\begin{align*}
\text{repayment: if } & u_t(r) + \varepsilon_t + \beta V_{t+1}(r, \varphi) \geq D(\varphi) \\
\text{default: otherwise,}
\end{align*}
\]

where $u_t(r) + \varepsilon_t$ is the period t utility of repaying the loan, β is the discount factor, and $V_{t+1}(r, \varphi)$ is the continuation utility, which can be defined recursively. We allow u_t to depend on t in order to capture any deterministic time dependence while we assume $\{\varepsilon_t\}$ to be i.i.d across t and mean zero.

We have presented the model up to now without making explicit the dependence of the primitives of the model on observable borrower/listing characteristics such as the credit grade. This is purely for expositional purposes. In our identification and estimation, we let u_t, ε_t, and F_φ depend on observable characteristics. In particular, we allow F_ε and F_φ to depend on observable characteristics in an arbitrary manner in our identification.

Borrower Reserve Rate Choice Now we describe our model of the borrower’s reserve interest choice. When the borrower determines the reserve interest rate, s, he has to trade off its effect on the probability that the loan is funded, and its effect on the contract interest rate, r. The borrower’s problem is then to choose s, subject to the usury law limit of 36%, as follows:
\[
\max_{s \leq 0.36} V_0(s, \varphi) = \max_{s \leq 0.36} \left[\Pr(s) \int V_1(r, \varphi) f(r|s) dr + (1 - \Pr(s)) \lambda \right],
\]
where \(\Pr(s) \) is the probability that the loan is funded, \(f(r|s) \) is the conditional distribution of the contract interest rate given \(s \), and \(\lambda \) is the borrower’s utility from the outside option, i.e., the borrower’s utility in the event of not obtaining a loan from Prosper. Borrowers with high values of \(\lambda \) have good outside option, e.g., borrowing money from relatives, friends, and local banks, etc. Borrowers with low values of \(\lambda \) have bad outside option. We suppress the dependence of \(\Pr(s) \) and \(f(r|s) \) on the characteristics of the borrower. Although \(\Pr(s) \) and \(f(r|s) \) are equilibrium objects, they are taken as exogenous and known by the borrower.

Note that an important choice variable for the borrower that we do not model is the loan amount. We treat the loan amount as part of the set of conditioning variables. Given that the borrowers’ reserve rate choice has to solve equation (6) conditional on the optimal choice of the loan amount, treating the loan size as a covariate does not bias our estimates. To the extent that the loan size has a signaling effect, we will be able to pick this up directly when we estimate the distribution of types conditional on borrower covariates. We come back to this point at the end of this section.

The first term in the bracket in equation (6) captures the borrower’s expected utility in the event of obtaining a loan through Prosper: \(V_1(r, \varphi) \), which is the value function of the borrower at period \(t = 1 \), is integrated against the distribution of the contract interest rate \(f(r|s) \). The second term captures the utility of the borrower in the event the loan is not funded: \((1 - \Pr(s)) \) is the probability that this event occurs, which is multiplied by the utility of the outside option, \(\lambda \).

In what follows, we assume that \(\varphi \) and \(\lambda \) are related as

\[
\lambda = \lambda(\varphi),
\]
where \(\lambda(\cdot) \) is an increasing function of \(\varphi \), where \(\varphi \) is the private type of the borrower we defined earlier. This assumption simply reflects the idea that “good” types (high \(\varphi \), who value their credit history, for example, have an easier time obtaining a loan from outside sources, such as relatives, friends, and local banks, etc., and hence have a high \(\lambda(\varphi) \). On the other hand, “bad” types, with low cost of default, e.g., borrowers who have a damaged credit history or are expecting to default in the future anyway, are likely to have only limited alternative sources of funding, and hence have a low \(\lambda(\varphi) \).

The first–order condition associated with problem (6) is as follows,

\[
\frac{\partial}{\partial s} \Pr(s) \left(\int V_1(r, \varphi) f(r|s) dr - \lambda(\varphi) \right) + \Pr(s) \int V_1(r, \varphi) \frac{\partial}{\partial s} f(r|s) dr = 0,
\]
for an interior solution. Equation (7) captures the trade-off that the borrower faces in determining
the reserve interest. The first term is the incremental utility gain that results from an increase in the funding probability, and the second term is the incremental utility loss resulting from an increase in the contract interest rate.

Recall from the previous section that we found strong evidence that \(\Pr(s) \) is increasing in \(s \) and that \(F(r|s) \) first order stochastically dominates \(F(r|s') \) for \(s \geq s' \), where \(F(r|s) \) is the conditional CDF of \(r \). We note that under these conditions, the single crossing property (SCP) is satisfied for \(s < 0.36 \). From the perspective of the borrower, SCP is necessary and sufficient to induce separation. Hence there is no pooling among types below the usury law maximum and pooling occurs only at the maximum. We state this as a proposition below.

Proposition 1 If \(\frac{\partial}{\partial s} \Pr(s) > 0 \) and \(F(r|s) \) FOSD \(F(r|s') \) for \(s' > s \), then we have SCP, i.e.,

\[
\frac{\partial^2}{\partial s \partial \varphi} V_0(s, \varphi) < 0.
\]

Proof. See Appendix. ■

To see the intuition for why SCP holds, consider the marginal utility from increasing \(s \), \(\frac{\partial}{\partial s} V_0(s, \varphi) \), for a given type \(\varphi \). As we explained above, \(\frac{\partial}{\partial s} V_0(s, \varphi) \) has two components. One is the incremental utility gain from an increase in the funding probability, and the other is the incremental utility loss resulting from an increase in the contract interest rate. The first component is decreasing in \(\varphi \), because borrowers with high \(\varphi \) already have a high outside option – these borrowers do not appreciate the increase in the funding probability as much as low \(\varphi \) types. The second component is also decreasing in \(\varphi \), because borrowers with high \(\varphi \) are likely to bear the full cost of an increase in \(r \), while borrowers with low \(\varphi \) will not – the low \(\varphi \) types will default with high probability anyway.23 A formal proof of this proposition as well as all other proofs are contained in the Appendix.

Before turning to the lenders’ model, we briefly discuss the optimal reserve rate choice of the borrowers when the usury law limit is binding. Recall from our discussion of Figure 2 that there is a non-negligible mass at exactly 36% for credit grades B and below, implying that the usury law maximum is a binding constraint for many borrowers in these credit grades. For credit grades B and C, the pattern in the data seem broadly consistent with partial pooling, i.e., separation of types below 36%, and pooling at 36%. For there to be partial pooling, we need an extra condition to hold (in addition to the requirements in Proposition 1) that prevents the pooled types from deviating. We describe these conditions in the Online Appendix. For these two credit grades (i.e., B and C), we will use them in our estimation accounting for the fact that there is separation of types below 36%, and some pooling at 36%. For credit grades D and below, an even larger fraction of the borrowers submit a reserve interest rate at the usury law maximum, leaving little variation in the

23 Conditional on default, the borrower does not have to bear the full cost of a high interest rate.
reservation interest rate. This means that data from these categories are not very informative about the signaling value of the reserve rate. Hence in our estimation, we only focus on credit grades AA, A, B, and C.

4.2 Lenders

In this subsection, we describe the model of the lenders. Let N be the (random) number of potential lenders. We let F_N denote its cumulative distribution function with support $\{0, 1, \ldots, \bar{N}\}$, where \bar{N} is the maximum number of potential lenders. The potential lenders are heterogeneous with regard to their attitude toward risk and with regard to their opportunity cost of lending.

Each potential lender must decide whether to submit a bid or not and what to bid if she does, where a bid is an interest-amount pair. At the time of bidding, a potential lender observes the active interest rate in addition to various characteristics of the listing, such as the reserve rate. In principle, the lender is free to bid any amount between 50 and the full amount requested by the borrower, but as we showed in Section 2, the vast majority of the bid amounts are either 50, 100, or 200. We therefore proceed with the assumption that lenders face a discrete set of amount $\{50, 100, 200\}$ to choose from.

Lender’s Problem with No Amount Choice We first describe the case when the lender can only bid 50, so that the lender’s decision is whether to bid or not and what interest rate to bid. We later extend the model to the case with amount choice. Before the lender can decide what to bid, the lender must first form beliefs over the return she will make if she funds a part of the loan. Given that the average return from funding loans on Prosper was negative for this sample period, we do not want to impose rational expectations. In our baseline results, we allow the lenders’ beliefs to be different from the actual realized distribution of returns, albeit in a very simple way.

Following the standard specification used in the asset pricing literature, we assume that the lender’s utility from owning an asset depends on the mean and variance of the return on the asset. Thus, we specify the utility of lender j who lends to listing Z at contract interest rate r, as follows:

$$U = \bar{U}_j^L(Z(r)) - \bar{\varepsilon}_{0j}$$

where $\bar{U}_j^L(Z(r)) = \bar{\mu}_j(Z(r)) - \bar{A}_j\bar{\sigma}_j^2(Z(r)) - c$.

$Z(r)$ is the random return from investing in Z at rate r, and $\bar{\mu}_j(Z(r))$ and $\bar{\sigma}_j^2(Z(r))$ are lender j’s expectation of the return and variance. \bar{A}_j is a lender specific random variable known only to lender j that determines her attitude toward risk and c and $\bar{\varepsilon}_{0j}$ are deterministic and random opportunity costs of lending to listing Z. If we express $\bar{\mu}_j$ and $\bar{\sigma}_j^2$ as deviations from the mean and variance that correspond to the actual realization of returns, we can rewrite the previous expression as follows:

23
Figure 5: Graphical Representation of the Lender’s Problem: Case of No Amount Choice – The figure illustrates how the lender should bid when there is no amount choice. In the left panel, the horizontal axis is σ^2 and the vertical axis is μ. For each listing and for each realization of the contract interest rate, we can assign a corresponding point on this $\mu - \sigma^2$ plane. Curve C corresponds to the mean and variance of a listing for different realizations of r. The dashed line is the lender’s indifference curve. The right panel plots $U^L_j(Z(r))$ against r.

\[
U = U^L_j(Z(r)) - \varepsilon_{0j}
\]

where $U^L_j(Z(r)) = \mu(Z(r)) - A_j \sigma^2(Z(r)) - c$

\[
\varepsilon_{0j} = \varepsilon_{0j} + U^L_j(Z(r)) - \bar{U}^L_j(Z(r)),
\]

where ε_{0j} now includes lender forecasting error as well as the opportunity cost of lending. $\mu(Z(r))$ and $\sigma^2(Z(r))$ are the expected return and variance computed using the realized distribution of returns.

For our baseline results, we make two important assumptions, which are (1) ε_{0j} does not depend on r; and (2) A_j and ε_{0j} are independent. The two assumptions are very convenient because the lender’s model is then isomorphic to the model in which lenders have rational expectations. While these are strong assumptions, they still allow, for example, the lenders to be optimistic about the expected return. This would be the case if $\mu_j(Z(r)) = \mu(Z(r)) + \varepsilon_{\mu j}$ and $\varepsilon_{\mu j}$ has positive mean. However, the independence assumption implies that the lenders’ beliefs over the variance coincide with the realized variance. We relax the independence assumption in Section 9.

Note that the mean and variance depend on the characteristics of listing Z, such as the reserve interest rate, loan amount, credit grade, etc., in addition to r. The characteristics of the loan other than r are suppressed to simplify notation. Also, in order to account for the possibility that lenders’ beliefs change over time, we let the mean of ε_{0j} to change each month. This time dependence is also suppressed.

In order to study the lender’s problem, it is useful to illustrate it graphically. Figure 5 is a
graphical representation of the lender’s problem. In the left panel of this figure, we take \(\sigma^2 \) to be the horizontal axis and \(\mu \) to be the vertical axis. Now, consider a listing \(Z \). For each realization of the contract interest rate, consider the mean return, \(\mu(Z(r)) \), and the variance of the return, \(\sigma^2(Z(r)) \). Note that we can plot the points \((\mu(Z(r)), \sigma^2(Z(r)))\) on this \(\mu - \sigma^2 \) plane for each \(r \).

Curve \(C \) in the left panel of Figure 5 illustrates the possible mean and variance for a given listing. The end point of the curve corresponds to the return and variance associated with the case when the listing is funded at the reserve rate, so that \(r = s \). As the contract rate is bid down from \(s \), the corresponding point on the \(\mu - \sigma^2 \) plane changes, and this is shown as a movement along Curve \(C \) in the direction of the arrows. Note that we have also drawn a dashed line in the left panel of Figure 5. This is the lender’s indifference curve, i.e., the set of points that makes the lender indifferent between lending and not lending. As the lender’s utility function is linear with respect to \(\mu \) and \(\sigma^2 \), the indifference curve is a straight line, i.e., \(\mu - A_j \sigma^2 - c - \varepsilon_{0j} = 0 \). Any point above this line gives the lender a strictly higher utility than the outside option, and vice versa. The lender is exactly indifferent between lending money and not lending money when the contract interest rate is \(r^0 \).

In the right panel of Figure 5, we plot the utility of the lender, \(U_{Lj}^L(Z(r)) \), as a function of \(r \). As the contract rate is bid down from \(s \), and as the corresponding point on the \(\mu - \sigma^2 \) plane changes, so does the utility from funding the loan. At \(r = r^0 \), the lender is indifferent between lending and not lending, which is reflected in the fact that \(U_{Lj}^L(Z(r)) \) crosses \(\varepsilon_{0j} \) at \(r^0 \). Note that as drawn in the figure, Curve \(C \) intersects with the lender’s indifference curve only once, or equivalently, \(U_{Lj}^L(Z(\cdot)) \) crosses \(\varepsilon_{0j} \) just once. The analysis for the case in which Curve \(C \) intersects with the indifference curve multiple times is more or less the same so we assume it away to simplify exposition. Our Proposition 3, which covers the case with lender amount choice is general enough to allow for multiple intersections.

We now claim the following: Under the assumption that the lender behaves as if she is never pivotal (i.e., never marginal), and that \(U_{Lj}^L(Z(\cdot)) \) crosses \(\varepsilon_{0j} \) just once, bidding \(r^0 \) is a (weakly) dominant strategy for the lender. That is, it is optimal for the lender to bid an interest rate that makes the lender indifferent between lending and not lending. We state this as a proposition below.

Proposition 2 Suppose that \(U_{Lj}^L(Z(\cdot)) \) crosses \(\varepsilon_{0j} \) just once. Under the assumption that the lender behaves as if she is never marginal, it is a weakly dominant strategy for the lender to bid an interest rate that makes the lender indifferent between lending and not lending.

Proof. See Appendix. ■

The reason for why this strategy is weakly-dominant is the same as why bidding one’s value is weakly dominant in a second-price auction. That is, as long as the lender is infra-marginal (i.e.,
not pivotal), increasing the bid does not affect the contract interest rate. Hence, it is in the lender’s best interest to bid her value. The proof of the proposition is in the Appendix.

While it is certainly restrictive, we think that assuming that lenders behave as if they will never be pivotal is a reasonable approximation of the lenders’ behavior. Given that the average requested amount is $6,603 for all listings ($5,821 for funded listings) and that the vast majority of the lenders bid $50, a large number of bids are required to fund a single loan (on average there are about 80 winning bids; see Table 2). Hence the probability of becoming the pivotal bidder is quite low. Moreover, not only is the probability of being the pivotal bidder very low, the possible gain from bidding strategically is also small – the difference between the lowest interest rate among the losing bids and the interest rate of the marginal bid is only about 0.12%, on average. For these reasons, we assume in what follows that lenders behave as if they will not be pivotal.

Lender’s Problem with Amount Choice Thus far, our discussion has considered the case with no amount choice for the lenders. Now consider the case with amount choice, where the borrower chooses \(q \) from the set \(M = \{50, 100, 200\} \) or chooses not to bid. Note that if the lender bids amount \(q \) to listing \(Z \) at contract interest rate \(r \), then \(E[qZ(r)] = q\mu(Z(r)) \) and \(Var(qZ(r)) = q^2\sigma^2(Z(r)) \). Hence, lender \(j \)’s utility can be expressed as follows,

\[
U = U^L_j(qZ(r)) - \varepsilon_{0j} = q\mu(Z(r)) - A_j(q\sigma(Z(r)))^2 - c_q - \varepsilon_{0j},
\]

where the cost of lending now depends on \(q \) as \(c_q \).

When the lender faces an amount choice, she needs to keep track of the utility associated with all possible actions. This is depicted in Figure 6. The three curves in Figure 6 correspond to \(U^L_j(50Z(\cdot)) \), \(U^L_j(100Z(\cdot)) \), and \(U^L_j(200Z(\cdot)) \). Just as before, there is a (weakly) dominant strategy for the lender under the assumption that the bidder is not pivotal. For the case shown in Figure 6, a (weakly) dominant strategy can be described by the following bidding strategy:

- bid amount $200 at interest \(r' \) if active interest rate \(\in [r', s] \)
- bid amount $100 at interest \(r'' \) if active interest rate \(\in [r'', r') \)
- bid amount $50 at interest \(r''' \) if active interest rate \(\in [r''', r'') \)
- do not bid if active interest rate \(\in [0, r''') \),

where the active interest rate is understood to be equal to \(s \) if the listing has not attracted enough bids to reach the requested amount. Basically, the lender should bid an amount \(q \) that maximizes \(U^L_j(qZ(r)) \) when the active interest rate is \(r \). The optimal interest rate associated with the amount is the minimum interest that makes \(U^L_j(qZ(\cdot)) \) higher than \(U^L_j(q'Z(\cdot)) \). We now state the previous
Figure 6: Graphical Representation of the Lender’s Problem: Case of Amount Choice – The figure illustrates how the lender should bid when there is amount choice. Each curve $U_j^L(qZ(r))$ illustrates the relationship between r and the lender’s utility net of ε_{0j} when the lender bids q. I_1 corresponds to the region of the active interest rate for which bidding 200 is optimal. I_2, I_3, and I_4 correspond to the regions of the active interest rate for which bidding 100, 50, and 0 is optimal, respectively.

Proposition 3 Define a partition $I_0 = [0, r_1]$, $I_1 = [r_1, r_2], \ldots I_M = [r_M, s]$, and a corresponding quantity for each interval, $q(0)$, $q(1), \ldots, q(M)$, where $q(k) \in \{\$0\} \cup M$, so that $U_j^L(q(k)Z) - \varepsilon_{0j} \geq U_j^L(q'(Z)) - \varepsilon_{0j}$ for all q' and $r \in I_k$.\(^{24}\) Under the assumption that the lender behaves as if she is never pivotal, it is a dominant strategy to bid $q(k)$ and interest rate r_k when the active interest rate is in I_k.

We conclude the lender’s model by briefly discussing the relationship between the model and identification. Using the ex-post borrower repayment data, we can identify $\mu(Z(r))$ and $\sigma(Z(r))$ for each r.\(^{25}\) In particular, we can identify $\mu(Z(s))$ and $\sigma(Z(s))$, where s is the reserve interest rate, i.e., we can identify the “starting end point” of Curve C for any listing. This means that for each distribution of A and N (the risk aversion parameter of the lender and the number of potential lenders) the lenders’ bidding strategy described above will induce a probability distribution over (i) whether a listing is funded and (ii) the number of lenders who bid $\$0$, $\$50$, $\$100$, and $\$200$ for listings that are not funded. In the next section, we show that this mapping from the primitives to the probability distribution over (i) and (ii) is actually a one-to-one mapping. Correspondingly, our estimation is based on matching the predicted distribution with the sample distribution.

\(^{24}\)To be more precise, when $q(k) \neq 0$, $U_j^L(q(k)Z) - \varepsilon_{0j} \geq \max\{0, \max_{q \in M} U_j^L(q(k)Z) - \varepsilon_{0j}\}$ and when $q(k) = 0$, $0 \geq \max_{q \in M} U_j^L(q(k)Z) - \varepsilon_{0j}$.

\(^{25}\) $\mu(Z(r))$ and $\sigma(Z(r))$ correspond to the mean and variance of $Z(r)$ computed assuming rational expectations.
4.3 Equilibrium

We now discuss equilibrium existence and uniqueness. There always exists an equilibrium of the model we described, but there may not exist a separating equilibrium. General sufficient conditions for the existence of a separating equilibrium are provided in Mailath (1987) (see also Mailath and von Thadden (2013)). While it is relatively straightforward to check whether the model satisfies the sufficient conditions in Mailath (1987) for a given parameter value, it is not easy to analytically characterize the set of parameters that satisfy these conditions. In what follows, we proceed by estimating the model assuming that the agents are playing a separating equilibrium. Once we have estimated our parameters, we then check whether the sufficient conditions for separation are satisfied at the estimated values. At the estimated parameter values, the conditions seem to generally hold.

As for uniqueness, signaling models generally admit multiple equilibria because there are always pooling equilibria in which no information is transmitted. It turns out, however, that under a mild assumption on the beliefs over borrower types off the equilibrium path, there is a unique separating equilibrium (see Mailath, 1987). Given our regression results from section 3, assuming that the agents are playing a separating equilibrium is not unreasonable. Hence, as long as the assumptions on the off-path beliefs are satisfied, we do not need to worry about multiple equilibria.

4.4 Model Discussion

In this section, we discuss some of our modeling choices and assumptions.

Independence of ε_t and φ An important assumption we made in our borrower’s repayment model is the independence of ε_t and φ. As we discussed above, mean independence of ε_t conditional on φ, i.e., $E[\varepsilon_t | \varphi] = 0$, is without loss of generality. This is because we can always redefine ε_t and φ – redefine ε_t as $(\varepsilon_t - E[\varepsilon_t | \varphi])$ and $D(\cdot)$ as $(D(\cdot) - E[D(\cdot | \cdot)])$ – so that $E[\varepsilon_t | \varphi] = 0$. Given

$\frac{\partial}{\partial s} V_0(s, \varphi, \tilde{\varphi}; X) / \frac{\partial}{\partial \varphi} V_0(s, \varphi, \tilde{\varphi}; X)$ is increasing in φ, $\forall \varphi, \forall X$,

where $V_0(s, \varphi, \tilde{\varphi}; X)$ is the borrower’s expected utility from posting a reserve interest rate s, when the borrower is of type φ, and the lenders perceive him to be of type $\tilde{\varphi}$. X is a vector of conditioning variables such as borrower and listing characteristics. The reason why we don’t include this condition in our estimation routine is because we need to verify whether the monotonicity requirement is satisfied for all X. It would be computationally impossible to include this condition in the estimation routine.
that we allow $D(\cdot)$ (or equivalently, the distribution of φ) to be nonparametric in our identification and estimation, this is without loss of generality. While, we assume independence of ε_t and φ, which is stronger than mean independence, it gives some credibility to the independence assumption.

Serial Correlation in ε_t Another assumption we made in our borrower’s repayment model is the independence of $\{\varepsilon_t\}$ across t. Note that what we observe in the data are a sequence of binary decisions (repay or default) for each borrower, in which default is an absorbing state: If a borrower defaults, we do not observe any repayment decisions from that point on. Unlike in a situation where there are distinct decisions for each of the T periods (i.e., no absorbing state), our particular data structure precludes us from identifying possible serial correlation in $\{\varepsilon_t\}$. Only the marginals of $\{\varepsilon_t\}$ are relevant for data generation. While this may appear to be a limitation, this means that as long as $\{\varepsilon_t\}$ is structural, our counterfactual policy is robust to serial correlation among $\{\varepsilon_t\}$.

Interpretation of φ Recall that the unobservable type of the borrower (φ) is interpreted as default cost in our model. However, we can write an alternative, observationally equivalent model where φ has the interpretation of unobserved income/assets of the borrower. We show this in the Online Appendix. While there are several ways to model borrower heterogeneity – default cost, income, or some combination of the two – the implied default pattern may be very similar. For our purposes, the exact nature of heterogeneity among the borrowers is not very important because it is structural to our counterfactual policy. This is not to say, however, that the distinction may be very important in other contexts.

Signaling through the Loan Amount In addition to the reserve interest rate, an important variable that the borrower needs to optimize over is the requested amount. We do not explicitly model the amount choice of the borrower and instead focus only on the reserve rate choice. First of all, the reserve rate choice offers a cleaner setting to analyze the effect of signaling. Given that the reserve rate should not affect the lender’s repayment behavior conditional on the contract interest rate, the correlation between the reserve rate and the default probability is informative about the

29 Consider an extreme case when $\{\varepsilon_t\}$ takes on only two values, $\{+\infty, -\infty\}$. The following two cases are observationally equivalent: (1) $\{\varepsilon_t\}$ are perfectly correlated, so $\varepsilon_1 = \cdots = \varepsilon_T$, and $\Pr(\varepsilon_1 = +\infty) = p$ (2) $\{\varepsilon_t\}$ are independently (but not identically) distributed, with $\Pr(\varepsilon_1 = +\infty) = p$, and $\varepsilon_t = +\infty$ with probability 1 for all $t \geq 2$. For case (1), either $\varepsilon_1 = \cdots = \varepsilon_T = +\infty$ or $\varepsilon_1 = \cdots = \varepsilon_T = -\infty$ with probability p and $1-p$. For case (2), $\varepsilon_1 = +\infty$ or $\varepsilon_1 = -\infty$ with probability p and $1-p$, but $\varepsilon_t = +\infty$ with probability 1 for all $t \geq 2$. Note that (1) and (2) are different ($\{\varepsilon_t\}$ are correlated in (1) and independent in (2)), but we cannot identify between (1) and (2): In both cases, the borrower would default with probability p in the first period, and conditional on not defaulting in the first period, the borrower never defaults later. Our counterfactual results would be the same under either data generating process.
pure informational value of the reserve rate as a signal. On the other hand, the requested amount can affect the default probability both through informational channels as well as through moral hazard.

Moreover, note that focusing only on the reserve rate choice and abstracting away from the amount choice does not bias our results for the following two reasons. First, even when the borrower optimizes over the requested amount, the borrower still chooses the reserve rate in accordance with equation (6). That is, conditional on the amount that the borrower requests, the borrower’s reserve interest rate still solves equation (6). Second, we are allowing \(\varphi \) to be (arbitrarily) correlated with the requested amount, allowing for the possibility that the requested amount can be informative about \(\varphi \). To the extent that the requested amount has a signaling aspect, we will be able to capture it directly when estimating the distribution of \(\varphi \) as a function of covariates.

Lender Beliefs
The lenders of our model form beliefs over the distribution of the return on the loans when they make their bidding decisions. While we allow the lenders’ beliefs to differ from the realized distribution of returns, we do so in a very restricted manner. In order to check the robustness of our results, we estimate our model under alternative beliefs. The robustness results are presented in Section 9.

Lender Portfolio
In our model, we abstracted from the portfolio decision of the lenders. In principle, however, lenders should care about the correlation between a given loan and existing loans. Hence, the lender’s utility should include a term that captures this correlation – which is currently missing.

As we discussed in Section 2.2, the average lender funds a total of 17.5 loans with a total portfolio size of about $1,300. Given that this is a relatively small amount of money, the correlation in the returns among loans may not be of first-order importance to many lenders. However, to the extent that portfolio considerations are important, our estimate of the distribution of the lender’s risk attitude \(A_j \) may pick up the correlation between the listing’s return and the lender’s other loan holdings as well as lender specific risk attitude. \(^{31}\)

Cost of Revising the Bid
The optimal strategy described in Proposition 2 requires the lenders to submit new bids as the active interest rate changes. In the situation depicted in Figure 6, for example, the lender would submit new bids as the active interest rate drops below \(r', r'', \) and \(r'''. \)

\(^{30}\)We do need \(\Pr(s) \) to be strictly monotone for all \(s \).

\(^{31}\)The lender may care about the variance of a given loan \(\sigma^2(Z) \) as well as the correlation between \(Z \) and other loans. The correlation term will get picked up by \(A_j \) in the estimation.
This implicitly takes as given that lenders have low cost of revising their bid.32 While this may be a strong assumption, it allows us to abstract from the dynamics of bidding and increases the tractability of the model. Also, in order to make sure that our estimates are not too sensitive to this assumption, we do not use the full implications of the dominant strategy (For example, we do not use the exact distribution of the realized contract interest rate). Our estimation only uses moments that are not too sensitive to this assumption as we describe below.

5 Identification

5.1 Identification of the Borrower’s Primitives

The primitives of the borrower that we would like to identify are the period utility function, \(u_t(\cdot) \), the distribution of borrower types, \(F_{\varphi|X} \), the cost of default, \(D(\cdot) \), the utility from the outside option, \(\lambda(\cdot) \), and the distribution of \(\varepsilon_t, F_{\varepsilon|X} \). We specify \(u_t \) to depend on the repayment amount and a time trend as \(u_t(r) = -(r \times x_{amt}) + d_t \), where \(x_{amt} \) is the loan size and \(d_t \) is a period specific constant term.

We begin with a few remarks. First, note that we allow the distribution of \(\varphi, F_{\varphi|X} \), as well as the distribution of \(\varepsilon_t, F_{\varepsilon|X} \), to depend on borrower/listing characteristics, \(X \). In particular, the distribution of \(\varphi \) can depend on the amount requested. To the extent that there is some signaling value in the requested amount, the conditional distribution of \(\varphi \) will depend on the amount requested. We are allowing for this possibility. Second, note that we can normalize either \(D(\cdot) \) or \(F_{\varphi|X} \) (for some \(X = X^* \)) without loss of generality. For identification (and estimation) we normalize \(D(\varphi) = -\varphi \).33 It is also easy to see that we can normalize one of the constants in \(u_t \) without loss of generality: Hence we set \(d_T = 0 \).34

The intuition for our identification is quite simple. Recall that we model the borrowers’ repayment decision as a sequence of binary decisions. Hence, if we knew the value of \(\varphi, F_{\varphi|X} \), as well as the distribution of \(\varepsilon_t, F_{\varepsilon|X} \), to depend on borrower/listing characteristics, \(X \). In particular, the distribution of \(\varphi \) can depend on the amount requested. To the extent that there is some signaling value in the requested amount, the conditional distribution of \(\varphi \) will depend on the amount requested. We are allowing for this possibility. Second, note that we can normalize either \(D(\cdot) \) or \(F_{\varphi|X} \) (for some \(X = X^* \)) without loss of generality. For identification (and estimation) we normalize \(D(\varphi) = -\varphi \).33 It is also easy to see that we can normalize one of the constants in \(u_t \) without loss of generality: Hence we set \(d_T = 0 \).34

To be precise, the binary threshold crossing model identifies \(F_{\varepsilon|X^*} \) for some \(X^* \). In order to identify \(F_{\varepsilon|X^*} \) for \(X \neq X^* \), we also use the first-order condition (7). Once \(F_{\varphi|X} \) and \(F_{\varepsilon|X} \) are identified, \(\lambda(\cdot) \) is identified from equation (7).
(monotonic) mapping of \(s \) to \(\varphi \) conditional on \(X \) (for the case of no pooling). Recall from Proposition 1 that the objective function of the borrower when choosing \(s \) (see equation (6)) satisfies the single crossing property. This guarantees that types with higher \(\varphi \) choose lower \(s \) conditional on \(X \). In particular, if we take loans for which the reserve rate is equal to the \(\alpha \) quantile of \(F_{s|X} \), the borrowers all have \(\varphi \) equal to the \(1 - \alpha \) quantile of \(F_{\varphi|X} \). Then the default rate among borrowers with reserve rate equal to \(F_{s|X}^{-1}(\alpha) \) identifies \(F_{\varphi|X}(\alpha) \) (and hence the value of \(\varphi \) for each borrower).

The following proposition states our results formally:

Proposition 4 \(F_{\varphi|X}, F_{s|X} \) and \(\lambda(\cdot) \) are nonparametrically identified up to location normalizations. \(\{d_t\} \) are also identified.

Proof. See Appendix. ■

Nonparametric identification of \(F_{\varphi|X}, F_{s|X} \) and \(\lambda(\cdot) \) holds even when there is partial pooling at 36%. The proof of this Proposition when there is no pooling appears in the Appendix. The Online Appendix contains the proof of the proposition when there is partial pooling.

5.2 Identification of the Lender’s Primitives

The primitives of the lender’s model that we need to identify are the distribution of the coefficient of risk, \(F_A \), the distribution of the outside option, \(F_{\varepsilon_0} \), the cost of lending, \(c_q \), and the distribution of the number of potential bidders, \(F_N \), which is assumed to have finite support \(\{1, \ldots, N\} \). Our proof of identification proceeds by first showing identification of \(F_A, F_{\varepsilon_0}, \) and \(c_q \) under the assumption that \(P_q(\mu, \sigma) \), which we will define below, is identified for all values of \((\mu, \sigma) \) and \(q \in M \cup \{0\} \equiv \{0, 50, 100, 200\} \). We will then show that \(P_q(\mu, \sigma) \) and \(F_N \) are identified. Given a listing with mean and variance of return equal to \(\mu \) and \(\sigma^2 \), define \(P_q(\mu, \sigma) \) to be the probability that funding \(q \) dollars gives higher utility to a lender than funding \(q' \) \((q' \neq q)\) dollars. Formally, \(P_q(\mu, \sigma) \) is expressed as follows:

\[
P_q(\mu, \sigma) = \begin{cases}
\text{Pr} \left(q\mu - A(q\sigma)^2 - c_q - \varepsilon_0 \geq \max \left\{ 0, \max_{q' \in M} \{q'\mu - A(q'\sigma)^2 - c_{q'} - \varepsilon_0\} \right\} \right) & \text{for } q \in M \\
\text{Pr}(0 \geq \max_{q' \in M} \{q'\mu - A(q'\sigma)^2 - c_{q'} - \varepsilon_0\}) & \text{for } q = 0
\end{cases}
\]

Note that \(P_q(\mu, \sigma) \) corresponds to the probability that \((A, \varepsilon_0) \) lie in the region defined by the inequalities in the expression above. By varying \(\mu \) and \(\sigma \), this region changes. Proposition 5 claims that with enough variation in \(\mu \) and \(\sigma \), we can recover the probability that \((A, \varepsilon_0) \) is contained in an arbitrary set, i.e., identify \(F_A \) and \(F_{\varepsilon_0} \).³⁶ In other words, \((F_A, F_{\varepsilon_0}, c_q)\) is identified if \(P_q(\mu, \sigma) \) are identified.

³⁶Our identification strategy is similar to the one taken in Cohen and Einav (2007).
Proposition 5 \((F_A, F_{e_0}, c_q)\) are identified if \((P_q(\mu, \sigma), P_0(\mu, \sigma))\) are identified.

Proof. See Online Appendix. ■

The next proposition claims that \(P_q(\mu, \sigma)\) and \(F_N\) are both identified.

Proposition 6 \(P_q(\mu, \sigma)\) is identified for all \(q\) and \((\mu, \sigma)\) on the support of \((\mu, \sigma)\). \(F_N\) is also identified.

Proof. See Online Appendix. ■

The proof of Propositions 5 and 6 are contained in the Online Appendix. Here, we briefly discuss the intuition for why \(F_N\) and \(P_q(\mu, \sigma)\) are identified. Consider a listing which has yet to be fully funded. Let \(x_{amt}\) denote the requested loan amount and \((\mu, \sigma^2)\) denote the mean return and variance of this listing if funded at the reserve interest, \(s\). Under the strategy described in section 4.2, lender \(j\) bids an amount equal to \(q\) if and only if lender \(j\)'s risk aversion parameter and the outside option, \((A_j, \varepsilon_{0j})\), are such that \(U_L^L(qZ(s)) - \varepsilon_{0j} \geq \max\{\max_{q' \in M} U_L^L(q'Z(s)) - \varepsilon_{0j}, 0\}\). The probability of this event is \(P_q(\mu, \sigma)\). Given that a listing is funded if and only if there is a sufficient number of potential bidders who are willing to fund it, we can express the probability that a listing is funded as a function of \(F_N\) and \(\{P_q(\mu, \sigma)\}\). Since the probability that a listing is funded can be identified for all \(x_{amt}\), \(\mu\), and \(\sigma^2\), if we assume that \(F_N\) is invariant to \(x_{amt}\) and \((\mu, \sigma)\), sufficient variation in \(x_{amt}\) and \((\mu, \sigma)\) identifies both \(F_N\) and \(P_q(\mu, \sigma)\).

Our identification relies on the fact that when a lender with \((A_j, \varepsilon_{0j})\) visits a listing that is still not fully funded, the lender submits a bid with amount \(q\) if and only if \(U_L^L(qZ(s)) - \varepsilon_{0j} \geq \max\{\max_{q' \in M} U_L^L(q'Z(s)) - \varepsilon_{0j}, 0\}\), where \(Z(\cdot)\) is evaluated at the return from funding the listing at \(s\). Note that this lender behavior is consistent with the dominant strategy we described in section 4.2.

6 Estimation

We estimate our model in three steps. First, we estimate the conditional distribution of the contract interest rate given the reserve rate, \(f(r|s, x)\), and the funding probability, \(Pr(s, x)\). We estimate these two functions nonparametrically as \(f(r|s, x)\) and \(Pr(s, x)\) are both equilibrium objects. The second step involves estimating the primitives of the model of the borrower, and in the last step, we estimate the model of the lender. While our discussion of identification in the previous section focused on nonparametric identification, we place parametric functional forms for some of the model primitives in our estimation, as we will describe below.

37Assuming that there is rich variation in \(x_{amt}\) is a bit problematic because the borrowers cannot request more than $25,000 i.e., \(x_{amt} \leq 25000\).
6.1 Estimation of $f(r|s,x)$ and $Pr(s,x)$

Our estimation proceeds first by estimating $f(r|s,x)$ and $Pr(s,x)$, where x is a vector of observable listing characteristics such as the credit grade, requested amount, debt-to-income ratio, and home ownership. We use a (second-order) Hermite series approximation to estimate $f(r|s,x)$, following Gallant and Nychka (1987). Our estimation of $Pr(s,x)$ is based on a Probit model with flexible functional forms. The details regarding the estimation are contained in the Online Appendix.

6.2 Estimation of the Borrower Model

We parameterize the borrower’s period t utility function and outside option with parameters θ_B and denote them by $u_t(r, \text{amt}; \theta_B)$ and $\lambda(\varphi; \theta_B)$. The default cost $D(\varphi)$ is normalized as $D(\varphi) = -\varphi$ (see Section 5.1).

In order to estimate θ_B, we maximize the likelihood of repayment and default for each borrower. Note that for any θ_B, our borrower’s repayment model generates a probability distribution over sequences of repayment and default decisions for each borrower type φ. Given that we do not observe φ, we cannot use the probability distribution directly to form a likelihood. Recall, however, that there is a monotone relationship between φ and s (conditional on x), where this relationship is implicitly defined by the borrower’s first-order condition (equation (7)). This means that we can back out the type of the borrower from his choice of s by using the first order condition. Once we can assign a φ for each borrower, we can then compute the likelihood of repayment and default.

The actual computation of the likelihood proceeds as follows: First, recall that the borrower’s choice of the reserve rate satisfies the first-order condition;

$$\frac{\partial Pr(s,x)}{\partial s} \left(\int V_1(r, \varphi, x; \theta_B) f(r|s,x) dr - \lambda(\varphi; \theta_B) \right) + Pr(s,x) \int V_1(r, \varphi, x; \theta_B) \frac{\partial f(r|s,x)}{\partial s} dr = 0. \quad (9)$$

Given that we observe the reserve rate chosen by each borrower, this equation can be seen as an equation in φ. In other words, the first-order condition reveals, for each choice of s, the type of borrower φ who found it optimal to choose s. Since we have estimated $Pr(s,x)$ and $f(r|s,x)$ in the first step, we can replace these objects with our nonparametric estimates $\widehat{Pr}(s,x)$ and $\widehat{f}(r|s,x)$. We can also compute $V_1(r, \varphi, x; \theta_B)$ for each value of $\{r, \varphi, x\}$ given θ_B by recursively solving the borrower’s dynamic problem. This allows us to back out the borrower’s type, $\varphi \equiv \varphi(s,x;\theta_B)$, for each borrower. Note that Proposition 1 shows that the right-hand side of equation (9) is monotonic in φ, guaranteeing a unique solution given s and x (for unpoled types).\(^{38}\)

\(^{38}\)In practice, there are a few borrowers (less than 10% of the sample) for whom we could not solve for $\varphi(s,x;\theta_B)$ even when $s < 36\%$. This would happen if the single-crossing condition is not satisfied for a given (s,x), i.e., $f(r|s,x)$ does not satisfy FOSD or $Pr(s,x)$ is not increasing at (s,x).

In principle, Mailath (1987) gives conditions under which a separating equilibrium exists (in particular, these con-
The second step of our procedure is to compute the likelihood for a given sequence of repayment decisions for each borrower \(i \), using \(b_i' = b_i'(s_i, x_i; \theta_B) \). Borrower \(i \)'s default probability at period \(t \) is

\[
\Pr(\text{default at } t; \theta_B) = \int 1 \{ -\hat{\varphi}_i \geq u_t(r_i, x_i, amt; \theta_B) + d_t + \varepsilon_{it} + \beta V_{t+1}(r_i, \hat{\varphi}_i) \} \, dF_{\varepsilon|x},
\]

and the probability of paying back at period \(t \) is \(1 - \Pr(\text{default at } t; \theta_B) \). Let \(\iota_{it} \) be an indicator variable that is equal to 1 if borrower \(i \) defaults at period \(t \), and 0 otherwise.

Finally, the likelihood is written as

\[
L(\theta_B) = \prod_{i=1}^{N_L} \prod_{t=1}^{T_i} \Pr(\text{default at } t; \theta_B)^{\iota_{it}} \times \Pr(\text{repay at } t; \theta_B)^{1-\iota_{it}},
\]

where \(N_L \) is the number of loans, \(\{\iota_{it}\} \), is the sequence of repayment decisions, and \(T_i \equiv \max\{1 + \sum_{\tau=1}^{T} \iota_{it}, 36\} \), i.e., the number of periods until default or 36 periods, whichever is smaller. We obtain our parameter estimates by maximizing the likelihood function.

6.3 Estimation of the Lender Model

The last part of the estimation considers the model of the lender’s bidding behavior. In particular, we discuss how to estimate the distribution of the number of potential bidders, \(F_{N}(\cdot; \theta_L) \), the distribution of the lender’s risk attitude, \(F_{A}(\cdot; \theta_L) \), the distribution of the opportunity cost of lending, \(F_{\alpha_0}(\cdot; \theta_L) \), and the lender’s cost of bidding, \(c_q \).

We use a (simulated) method of moments by matching the conditional funding probability and the number of bids. First, let \(f d_i \) be a dummy variable which equals 1 if listing \(i \) is funded, and 0 otherwise. Then \(\frac{1}{I} \sum_{i=1}^{I} f d_i \) gives the (empirical) probability that a listing is funded, where \(I \) is the number of observations. Likewise, let \(f d_i(\theta_L) \equiv f d(x_i, s_i; \theta_L) \) denote a random dummy variable which equals 1 if listing \(i \) is funded and 0 otherwise, given listing characteristic \(x_i \), reserve conditions imply that the single crossing property for the borrowers is satisfied for equation (9)). We checked whether the conditions in Mailath (1987) are satisfied at the estimated parameters: By-and-large, they seem to be. But for some values of \(x \), the condition fails, and as a result, we cannot solve for \(\hat{\varphi}(s, x; \theta_B) \) for some borrowers. When we fail to solve for \(\hat{\varphi} \), we replace \(\hat{\varphi} \) with default values. We tried two different default values and the results seem to be pretty stable. The results from the different specifications are available on request.

Up to now, our discussion focused on the case when there is no pooling among the borrowers. Note that even when there is (partial) pooling, we can obtain the same likelihood for the types that are not being pooled. For estimating the parameters of the borrowers when there is pooling, we proceed by using just the subsample of borrowers who are not pooled. While this may not be the most efficient way of estimation, our estimates of the parameters are still consistent for all of the borrower primitives except for \(F_{\varphi|x} \), for which we will not have a point estimate.
interest s_i, and parameter θ_L. As we will explain below, $fd(x_i, s_i; \theta_L)$ can be expressed as

$$fd(x_i, s_i; \theta_L) = 1 \left\{ \sum_{j=1}^{N} q_j^* \geq x_{i,\text{amt}} \right\} \quad \text{and}$$

$$q_j^* = \arg \max_{q_j \in M \cup \{0\}} \left\{ 1\{q_j \neq 0\} \left(U_j^L(q_j Z(s)) - \varepsilon_{0j} \right) \right\},$$

where N is the (random) number of potential lenders, $U_j^L(q_j Z(s))$ is the utility of lending q_j dollars at interest rate s (defined in expression (8)), and 1_E is an indicator function that equals one if event E is true. Taking this expression as given for now, our objective function minimizes the difference between the sample moments and the model expectation:

$$\frac{1}{T} \sum_{i=1}^{T} fd_i - E[fd_i(\theta_L)].$$

We now explain why $fd_i(\theta_L)$ can be expressed as (12). Suppose that there are N potential lenders and their risk attitude and outside option are $(A_j)^N_{j=1}$ and $(\varepsilon_{0j})^N_{j=1}$. When the loan is not fully funded yet, the optimal choice is given by the second equation in expression (12), where $U_j^L(q_j Z(\cdot))$ is evaluated at the reserve interest rate s. Now consider the right hand side of the first equation of (12). $x_{i,\text{amt}}$ is the loan amount requested by borrower j, and $\sum_{j=1}^{N} q_j^*$ is just the sum of the lenders’ bid amount. Assuming that the lenders play the strategy we described in section 4.2, a loan is funded if and only if $\sum_{j=1}^{N} q_j^* \geq x_{i,\text{amt}}$.

In addition to the funding probability, we also match two moments. The first is the number of lenders, in particular, the number of lenders who bid an amount $q \in \{50, 100, 200\}$ to unfunded listings. The second is the fraction of listings that receive no bids. These objects can be expressed as functions of the primitives as long as lenders play the strategy we described in section 4.2.

Note that the set of moments that we use in the estimation does not use the full implications of the strategy we defined in section 4.2. For example, we do not use information concerning the realization of the actual contract interest rate or the number of lenders who bid an amount equal to q conditional on the listing being funded. This is because these objects are quite sensitive to the particular dominant strategy described in section 4.2. If lenders are playing other strategies (say, because revising their bid is costly), the distribution over the contract interest rate could be quite different depending on how we specify the timing of lender arrival. Finally, we have suppressed the conditioning variables in our exposition, but we construct moment conditions for each conditioning variable.40

40For our first two moments (fd_i and $1\{fd_i = 0\} N_{i,q}$), we compute the moments for each credit grade, each quantile of the debt-to-income ratio and each quantile of the amount requested. For our last moment (nb_i), we just compute one moment for each credit grade. We then sum the moment conditions for each credit grade.
Table 6: Quantiles of the Borrower’s Type Distribution: This table reports the estimated quartiles of the default cost of the borrower, \(\varphi \), by credit grade and by requested amount. The unit is $1,000.

<table>
<thead>
<tr>
<th>Amount Quantile</th>
<th>Type Quantile</th>
<th>AA</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>25%</td>
<td>10.683</td>
<td>2.966</td>
<td>3.196</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50%</td>
<td>10.872</td>
<td>3.365</td>
<td>3.479</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75%</td>
<td>10.966</td>
<td>3.867</td>
<td>4.012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25%</td>
<td>10.000</td>
<td>2.944</td>
<td>3.041</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50%</td>
<td>10.302</td>
<td>3.207</td>
<td>3.424</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75%</td>
<td>10.595</td>
<td>3.726</td>
<td>4.031</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25%</td>
<td>8.000</td>
<td>2.755</td>
<td>3.099</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50%</td>
<td>8.196</td>
<td>2.923</td>
<td>3.463</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75%</td>
<td>8.427</td>
<td>3.454</td>
<td>3.977</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>9.756</td>
<td>3.224</td>
<td>3.404</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75%</td>
<td>10.683</td>
<td>3.760</td>
<td>3.947</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7 Results

The exact specification we use to estimate the model of the borrower is as follows: First, we set the period utility function as \(u_t(r_j; \theta_B) = -r \times x_{amt} + \theta_t \), where \(\{\theta_t\} (t \in \{1, 2, \ldots, 35\}) \) are time dummies.\(^{41}\) \(D(\varphi) \) is normalized to \(-\varphi\) and the outside option \(\lambda(\varphi) \) is specified as a linear function with a credit grade specific slope as \(\lambda_{x_{gr}} \varphi \). The key primitive of the borrower’s model, the type of each borrower, is recovered nonparametrically for each borrower. Lastly, \(F_\varepsilon \) is specified to be a Type I extremum value distribution with standard error equal to \(\sigma_\varepsilon \) and the discount factor, \(\beta \), is set to 0.95\(^{1/12}\).

As for the lenders’ side, we estimated the distribution of potential lenders, \(F_N \), the distribution of lender’s risk attitude, \(F_{A_j} \), the distribution of the outside option and forecasting error, \(F_{\varepsilon_{0j}} \), and the costs of bidding for each amount choice, \(\{c_{50}, c_{100}, c_{200}\} \). In our estimation, we specified \(F_N \) to follow a log normal distribution with parameters \(\mu_N \) and \(\sigma_N^2 \). Moreover, we specified the distribution of both the risk attitude, \(F_{A_j} \), and the outside option, \(F_{\varepsilon_{0j}} \), to be Normally distributed with \(N(\mu_A, \sigma_A^2) \) and \(N(\mu_{\varepsilon_{0j}}, \tau, \sigma_{\varepsilon_{0j}}^2) \). The mean of the distribution of \(F_{\varepsilon_{0j}} \) is allowed to depend on the calendar month, \(\tau \), to capture changes in the lender’s outside option or beliefs due to factors such as macro shocks. Given that one of \(\{c_{50}, c_{100}, c_{200}, \mu_{\varepsilon_{0j}}\} \) can be normalized to zero, we set \(c_{50} = 0 \).

We report the estimation results in Table 6 and Table 7. In Table 6, we report the distribution of the default cost of the borrower (\(\varphi \)), by credit grade and requested amount. Table 7 report the parameter estimates of the model.

Table 6 reports the quantiles of borrower type (\(\varphi \)) by credit grade and by requested amount in units of $1,000. Recall that one interpretation of \(\varphi \) is the borrower’s default cost, with good types

\(^{41}\)In practice, we estimate 11 time dummies for each credit grade by imposing \(\theta_t = \theta_{t+1} = \theta_{t+2} \) for \(t = 3N + 1 \) (\(N \in \{0, \ldots, 11\} \)) and normalizing one of them.
quantiles are not affected by this however.

amount) are estimated to be around (and hence more likely to default). We find that the median default cost (across all requested loan having high default cost (and hence less likely to default) and bad types having low default cost scaled in $1,000, and the lender’s model is scaled in $1.

dummies are included in the estimation of both the borrower’s and lender’s model, but we omit the estimates from the table. Standard errors are obtained by bootstrap (150 times) and they are reported in parentheses. Borrower’s model is

Parameter Estimates of the Borrower’s and Lender’s Model. We report the parameter estimates of the

Table 7: Parameter Estimates of the Borrower’s and Lender’s Model. We report the parameter estimates of the borrower’s model in the first column of this table and the estimation results of the lender’s model in the rest. Time dummies are included in the estimation of both the borrower’s and lender’s model, but we omit the estimates from the table. Standard errors are obtained by bootstrap (150 times) and they are reported in parentheses. Borrower’s model is scaled in $1,000, and the lender’s model is scaled in $1.

having high default cost (and hence less likely to default) and bad types having low default cost (and hence more likely to default). We find that the median default cost (across all requested loan amount) are estimated to be around $9,800 for credit grade AA, $7,200 for credit grade A, $3,200 for credit grade B and $3,400 for credit grade C (second to last to row).

We find that borrowers with credit grades AA and A have much higher default cost compared to borrowers with credit grades B or C. This seems natural given that we expect borrowers with good credit grades to have higher default cost. While we find it somewhat surprising that borrowers with credit grade C have slightly higher default cost than borrowers with credit grade B, this probably reflects the fact that borrowers of these two credit grades are not that different – as we reported in Table 3, the average default probability of borrowers in these two credit grades were only about 1% apart.

Another general pattern that can be seen from Table 6 is that borrowers who request a large amount generally have lower values of φ. For example, the median AA borrower with a requested loan amount at the 75% quantile has a default cost equal to about $8,200 – which is more than $2,000 lower than the default cost of the median AA borrower with a requested amount at the 25% quantile. Note that conditioning on the requested amount tightens the distribution of φ significantly in credit grades AA and A, but less so for B and C. For example, the unconditional interquartile range of credit grade AA is about 2.8 whereas the conditional interquartile range at

\[\text{Obs} \quad 3,818 \]

\[1,420 \quad 1,850 \quad 3,068 \quad 5,203 \]

\[\begin{array}{c|ccc|ccc}
| Parameter | \text{Borrower Estimates} | \text{Parameter} | \text{AA} | \text{A} | \text{B} | \text{C} | \\
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_ε</td>
<td>6.0096</td>
<td>μ_ε</td>
<td>4.5848</td>
<td>3.5513</td>
<td>4.3386</td>
<td>2.9504</td>
</tr>
<tr>
<td>(0.2095)</td>
<td>(0.0635)</td>
<td>(0.1569)</td>
<td>(0.2761)</td>
<td>(0.0733)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>λ_{AA}</td>
<td>3.0965</td>
<td>σ_N</td>
<td>0.7213</td>
<td>1.3940</td>
<td>1.1132</td>
<td>1.4640</td>
</tr>
<tr>
<td>(0.0827)</td>
<td>(0.0984)</td>
<td>(0.3151)</td>
<td>(0.0448)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>λ_A</td>
<td>4.3398</td>
<td>μ_A</td>
<td>2.24×10^{-2}</td>
<td>1.91×10^{-2}</td>
<td>3.67×10^{-2}</td>
<td>3.46×10^{-2}</td>
</tr>
<tr>
<td>(0.1384)</td>
<td>(1.64 \times 10^{-3})</td>
<td>(1.72 \times 10^{-3})</td>
<td>(8.22 \times 10^{-3})</td>
<td>(1.79 \times 10^{-3})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>λ_B</td>
<td>9.4551</td>
<td>σ_A</td>
<td>2.22×10^{-2}</td>
<td>2.00×10^{-2}</td>
<td>1.75×10^{-2}</td>
<td>1.58×10^{-2}</td>
</tr>
<tr>
<td>(0.3477)</td>
<td>(9.36 \times 10^{-4})</td>
<td>(6.58 \times 10^{-4})</td>
<td>(3.29 \times 10^{-3})</td>
<td>(4.56 \times 10^{-4})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>λ_C</td>
<td>8.8111</td>
<td>μ_{c_0}</td>
<td>-14.8775</td>
<td>-13.2908</td>
<td>-9.6035</td>
<td>-1.4651</td>
</tr>
<tr>
<td>(0.3551)</td>
<td>(0.8411)</td>
<td>(0.7640)</td>
<td>(1.8669)</td>
<td>(0.0385)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_{c_0}</td>
<td>86.4102</td>
<td>c_{100}</td>
<td>-1.6206</td>
<td>-1.7003</td>
<td>-0.5006</td>
<td>0.4868</td>
</tr>
<tr>
<td>(10.2508)</td>
<td>(4.0462)</td>
<td>(4.4980)</td>
<td>(2.6275)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c_{200}</td>
<td>-21.9644</td>
<td>-27.3998</td>
<td>-10.9928</td>
<td>-14.8229</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3.1801)</td>
<td>(2.8967)</td>
<td>(2.7251)</td>
<td>(0.5049)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obs</td>
<td>3,818</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\begin{array}{c|ccc|ccc}
| Obs | 3,818 | | | | | |
| 1,420 | 1,850 | 3,068 | 5,203 |

\[^{42} \text{For borrowers who posted a reserve rate equal to 36\%, we do not have a point estimate of their types. The quantiles are not affected by this however.} \]
the median requested amount is less than 0.6. For credit grade C, the unconditional and the conditional interquartile range are about the same. These results imply that the requested amount has an important signaling value for credit grades AA and A, but not so much for credit grades B and C.

In the first two columns of 7 we report the parameter estimates of the borrowers’ model. The rest of Table 7 presents the estimation results of the lenders’ model. Recall that λ_{xgr} is a parameter that measures the relationship between the default cost of the borrower (φ) and the utility of the outside option ($\lambda_{xgr} \varphi$). Our estimates of λ_{xgr} indicate that it is smaller for high credit grades ($\lambda_{AA} = 3.1$ and $\lambda_{A} = 4.3$) and becomes larger for low credit grades ($\lambda_{B} = 9.5$ and $\lambda_{C} = 8.8$). Our estimates imply that a 100 increase in the default cost of the borrower translates to a 310 increase in the outside option for credit grades AA, 430 increase for credit grade A, and so on. The relatively large estimate of λ_{xgr} that we find for low credit grades compared to high credit grades may reflect the fact that the marginal increase in the default cost of the borrower for low credit grades leads to a disproportionate increase in the default probability. A given reduction in the default cost may translate to more credit at lower credit grades and hence to a higher utility from the outside option.

Columns 3 through 7 of Table 7 report the parameter estimates for the lenders. We estimated a log Normal distribution for the number of potential bidders. The parameter estimates reported in the table (μ_N, σ_N) translate to a mean number of potential lenders of about 127.1, 92.1, 142.3, and 55.8 for each of the four credit grades. Our estimates of the lenders’ risk aversion parameter (μ_A, σ_A) range from 1.91×10^{-2} to 3.67×10^{-2}, which are comparable to the risk aversion estimates reported in Paravisini, Rappoport and Ravina (2013) who studies a similar setting. They estimate that the average risk aversion among participants of Lending Club, another P2P lending web site, is about 3.68×10^{-2}, with a standard deviation of about 2.37×10^{-2}. Our results also lie in that range of estimates reported in Holt and Laury (2002).

Finally, Table 7 reports our estimate of the mean of ε_{0j} (μ_{ε_0}), which range from -1.47 to -14.88. Note that we let μ_{ε_0} vary by month – the estimates in Table 7 correspond to the mean of ε_{0j} for October 2008.43 The estimates of μ_{ε_0} for other months are not reported in the table but they are quite similar.

Recall that ε_{0j} is a term that captures a combination of the lender’s forecasting error and opportunity cost. Given our specification, $-\varepsilon_{0j}$ can also be interpreted as lender j’s utility from lending 50 to a loan that is certain to yield a 0% interest ($\mu = \sigma = 0$). The negative estimates of μ_{ε_0} imply that lenders are, on average, willing to fund such a loan. This suggests that lenders had overly optimistic beliefs, and that some of this optimism is captured in ε_{0j}.

43 October 2008 is the last month of the sample period.
Figure 7: The Credit Supply Curve for the Borrower of the Median Type – The thick dotted curve corresponds to the credit supply curve under no signaling (i.e., pooling). The solid line corresponds to the credit supply curve under signaling, and the dotted line that lies on top of it corresponds to the credit supply curve under no asymmetric information. Borrower covariates are set to the median values.

8 Counterfactual Experiment

In our counterfactual experiment, we compare the equilibrium market outcome and welfare under three alternative market designs – a market with signaling, a market without signaling (i.e., pooling) and a market with no information asymmetry between borrowers and lenders. This counterfactual is interesting because it allows us to empirically quantify the extent to which credit markets suffer from adverse selection and the extent to which signaling can affect market outcomes. In particular, the question of how adverse selection affects credit supply goes back to Stiglitz and Weiss (1981) but few empirical attempts have been made to study the effect.44

In Figure 7, we present the credit supply curves for each of the four credit grades. The horizontal axis in the figure corresponds to the average supply of credit and the vertical axis corresponds to the interest rate. The scale of the horizontal axis is different for each of the four panels reflecting the fact that the amount of credit supply varies considerably from credit grade to credit grade. The curves in the figure correspond to the credit supply curve under signaling, no asymmetric information, and pooling. Below, we explain each in turn.

- **Credit supply curve under signaling**: The solid curves in Figure 7 correspond to the credit supply curves under signaling. These supply curves correspond to the average amount of credit that potential lenders are willing to supply under the actual mechanism used by Prosper. The supply curves are drawn for the median (unobserved) borrower type in each credit grade.45 The reserve interest rate for the median type corresponds to about 11%, 15%, 20%, 22%, for credit grades AA, A, B and C, respectively. The credit supply curves trace the

44 We treat F_N, the distribution of the number of lenders as exogenous in simulating our counterfactual. We also take F_x, the borrower’s type distribution, as exogenous. We acknowledge that these are potential limitations of our counterfactual experiment.

45 We also fix the observable characteristic of the borrower to $x_{amt} = 10,000$, debt-to-income ratio equal to 0.2, and home ownership variable equal to one.
average amount of credit that potential lenders are willing to supply to the median borrower type at different interest rates. Note that the supply curves are truncated above at the reserve interest rates (e.g., 11% for credit grade AA). The borrower does not have access to credit above the reserve rate in the signaling equilibrium.

- **Credit supply curve under no asymmetric information (NAI):** The dotted curves that lie on top of the signaling credit supply curves correspond to the case with NAI. The supply curves are again drawn for the median (unobserved) borrower type. The credit supply under NAI are computed under the counterfactual scenario in which the lenders can directly observe \(\varphi \) (as opposed to learning \(\varphi \) through the reserve rate). Note that under both the signaling equilibrium and NAI, the lenders have perfect knowledge of borrower types in equilibrium: The lenders know that they are lending to a borrower of a particular type. Thus, the credit supply curves under signaling and NAI partly coincide.

The difference between signaling and NAI is that the borrowers do not need to signal their type by the reserve price under NAI. Hence, they can borrow at rates that are higher than the reserve rate that they would post under the signaling equilibrium. This means that the credit supply curve for NAI extends beyond the reserve rate all the way until the point at which the borrower is indifferent between borrowing and not borrowing. The truncated supply curve under the signaling equilibrium can be viewed as capturing the cost that borrowers must pay (i.e., the surplus that has to be burned) in order to differentiate himself from lower types in the signaling equilibrium.

- **Credit supply curve under no signaling (i.e., pooling):** The thick dotted curve in each of the panels represent the credit supply curve under asymmetric information with no signaling (i.e., pooling). This curve is computed assuming that each borrower can post a secret reserve price. That is, we let the borrower take out a loan only if the contract interest at the end of the bid closing period is less than the secret reserve price. Note that under this market design, it is a dominant strategy for each borrower to submit a secret reserve rate equal to the interest rate at which the borrower is indifferent between borrowing and not borrowing.\(^46\) This market design would induce pooling of types, i.e., at a given interest rate, there would be a mix of different borrowers who take out the loan, and the lenders have no way of differentiating among them. The supply curve traces out the average amount of credit that potential lenders are willing to supply to a pool of borrower types at a given interest rate. The pool of borrowers correspond to the set of borrowers whose secret reserve price is higher than the given interest rate.

\(^{46}\)For a more detailed computational procedure for obtaining the credit supply curve under pooling as well as the supply curve under signaling and under no asymmetric information, see Online Appendix.
Table 8: Expected Surplus for Different Market Designs by Credit Grade: The first three columns correspond to the expected surplus of the borrower, the lender and the sum of the two. The last three columns correspond to the expected surplus generated from loans to the median borrower.

Figure 7 makes clear the role of adverse selection and moral hazard in credit markets. First, note that the credit supply curve under signaling and under no asymmetric information for grades B and C are backward bending. This is the result of moral hazard. As borrowers are charged higher interest rates, the likelihood of default increases. Above a certain interest rate, the marginal increase in revenue from a higher interest rate is overwhelmed by the loss from increased probability of default. As a result, the supply of credit starts to decrease at a certain point.

On the other hand, the shape of the supply curves under pooling reflects both moral hazard and adverse selection. Both adverse selection and moral hazard combine to suppress the supply of credit at higher interest rates. The borrowers who are willing to take out a loan at high interest rates tend to be of low types who are likely to default to begin with. Moreover, the borrowers that take out the loan are likely to default because of high interest. This is the reason why the supply curves for pooling start to bend backwards sooner (i.e., at lower interest rates) than the supply curves under signaling and under no asymmetric information. Depending on the shape of the credit demand curve there could be credit rationing, as demonstrated by Stiglitz and Weiss (1981).

Figure 7 is also informative about the severity of adverse selection for different credit grades. There are substantial differences between the credit supply under pooling and the supply curve under no asymmetric information for grades B and C. This is indicative that adverse selection in these credit categories is relatively more severe. This is also broadly consistent with the findings in Iyer et al. (2010) where they find that conditional on the credit grade, the borrowers’ credit score had a statistically significant effect on the default rate in grade C, but not in better credit grades.
Finally, we examine the welfare implications of signaling and information asymmetry. In Table 8, we report the surplus of the lenders and the borrowers per listing for each of the three different market designs we consider. The surplus of a borrower with type φ is the product of the probability of being funded ($\Pr(\text{funded})$) and the surplus conditional on borrowing ($\mathbb{E}_r[V_1(r, \varphi) - \lambda(\varphi)]$), where the expectation is over the contract interest rate. The surplus of lender j is $\mathbb{E}_r[U^L_j(r)]$, if a loan is funded and 0, otherwise. We compute the average and the median surplus by simulating the model using the estimates we obtained from our structural model. Details of the computation are discussed in the Online Appendix. Listing characteristics such as the amount, debt-to-income ratio, and home ownership are set to their median values, as before.

In the first three columns, we report the expected surplus averaged over the borrower’s type distribution. First, consider the welfare of the borrowers reported in the first column. Comparing the borrower welfare under pooling and under no asymmetric information, we find that the welfare loss from information asymmetry is relatively modest in credit grade A (142.7 under pooling and 143.3 under no asymmetric information) while the welfare loss is relatively more severe in credit grades AA, B and C. Comparing these numbers to borrower welfare under signaling, we find that welfare improves relative to pooling in all credit grades except for credit grade AA. In particular, for credit grades B and C, signaling restores most of the welfare loss caused by adverse selection. For credit grade AA, the borrower welfare under pooling is higher than the borrower welfare under signaling. This happens because the surplus that must be burned (i.e., the transactions that must be foregone by submitting a lower reserve interest rate under signaling) in order to maintain a separating equilibrium is sufficiently costly. This off-sets any benefits gained by reducing information asymmetry between the lenders and the borrowers. Note that in general, it is not possible to Pareto-rank equilibrium under pooling and signaling.

Second, consider the welfare of the lenders reported in the second column. Comparing the welfare of the lenders under pooling and under no asymmetric information, we find that welfare decreases considerably under pooling in all credit grades except for credit grade A, where welfare of the lenders is slightly higher under pooling.\footnote{Given that borrowers have limited liability, welfare is not necessarily maximized under no informational asymmetry. More borrowers may obtain credit under pooling than under no information asymmetry and total welfare may be lower under the latter setting than under the former.} Similar to what we found for the case of borrowers, we find that signaling improves welfare in credit grades B and C, but not in credit grade AA (and A). Again, the reason for this is that for credit grade AA, there is a net decrease in the listings that are funded as a result of low reserve rates. This is in contrast to credit grades B and C where the increased credit supply from reducing information asymmetry outweighs the reduction in transactions that result from lower reserve interest rates.

The third column of Table 8 is informative about the cost of adverse selection, as well as the
extent to which welfare can be restored through signaling. Comparing the total surplus under pooling and no asymmetric information, we find that the cost of adverse selection can be quite large, with a 16% ($157.5) decrease in total surplus for credit grade B and a 13% ($124.2) decrease in total surplus for credit grade C. We also find that in some instances, signaling can restore a large fraction of the potential welfare loss from adverse selection, with 95% and 87% of the welfare loss avoided through signaling in credit grades B and C.

Lastly, we report the expected surplus of the borrowers and lenders given a listing posted by the median borrower type in columns four through six. The overall patterns are similar to those of the mean reported in the first three columns.

9 Robustness

An important assumption that we have made all along is that the lenders’ beliefs over the return from lending money deviate from rational expectations in very limited ways. In particular, we assumed that the lender’s risk attitude (A_j) and ε_{oj} are independent. This assumption implies that the lenders’ beliefs over the variance of return to coincide with the realized variance.

In order to check the robustness of our results to this assumption, we estimated an alternative specification with more structure on the lenders’ beliefs. In particular, we estimated a model where the beliefs of the lenders are given by

\[
\begin{align*}
\mu &= \mu_{RE} + \rho_0 + \rho_1 \mu_{S&P} \\
\sigma^2 &= \sigma^2_{RE} \times \exp(\nu_1 \sigma^2_{S&P}),
\end{align*}
\]

where μ_{RE} and σ^2_{RE} are the mean and variance of the realized loan return and $\mu_{S&P}$ and $\sigma^2_{S&P}$ are the weekly mean and the volatility index of the S&P 500 and ρ_0, ρ_1 and ν_1 are parameters to be estimated. The mean of ε_{oj} is set to zero, instead. Our estimates (full results are reported in the Online Appendix) of ρ_1 and ν_1 are quite close to zero, implying that including the stock market performance does not improve much relative to our baseline results. Figure 8 plots the counterfactual credit supply curve from this specification. The supply curves are qualitatively similar to the baseline results in Figure 7.

10 Conclusion

In this paper, we study how signaling can restore some of the inefficiencies arising from adverse selection using data from an online peer-to-peer lending market, Prosper.com. We first provide some evidence showing that the reserve interest rate posted by potential borrowers work as a signaling
device. Based on this evidence, we then develop and estimate a structural model of borrowers and lenders. In our counterfactual, we compare the credit supply curve and welfare under three different market designs: a market with signaling, a market without signaling, and a market with no asymmetric information. We find that in one of the credit grades, signaling exacerbates the welfare cost of adverse selection, but we also find that signaling can restore much of the welfare losses that result from adverse selection in other credit grades.

Our paper is the first structural analysis of signaling in industrial organization to the best of our knowledge, and it is also the first attempt at estimating the credit supply curve, as far as we are aware. We also believe that the methods developed in the paper can be applied to other settings in which signaling is important (e.g., auctions and reservation price). For future research, we think that it is important to study other types of credit markets in order to understand more fully the costs of adverse selection and the benefits of signaling.

A Appendix

A.1 Proof of Proposition 1

We provide a proof of Proposition 1. We do so by first proving the following lemma.

Lemma 1 \(\frac{\partial}{\partial \varphi} V_1(r, \varphi) \) is non-increasing in \(r \).

Proof. The proof is by induction. We first show that \(\frac{\partial}{\partial \varphi} V_T(r, \varphi) \leq 0 \), \(\frac{\partial}{\partial \varphi} V_T(r, \varphi) \leq 0 \), and \(D'(\varphi) \leq \beta \frac{\partial}{\partial \varphi} V_T(r, \varphi) < 0 \). We then show that if \(\frac{\partial}{\partial \varphi} V_{\tau}(r, \varphi) \leq 0 \) and \(D'(\varphi) \leq \beta \frac{\partial}{\partial \varphi} V_{\tau}(r, \varphi) < 0 \) for some \(\tau \leq T \), then the same conditions hold for \(\tau - 1 \). First, for \(t = T \),

\[
\frac{\partial}{\partial \varphi} V_T(r, \varphi) = \frac{\partial}{\partial \varphi} \int \max \{ u_T(r) + \varepsilon_T, D(\varphi) \} dF_{\varepsilon_T}(\varepsilon_T) = D'(\varphi) P r_T (r, \varphi),
\]
where \(\Pr_T(r, \varphi) = \Pr(u_T(r) + \varepsilon_T < D(\varphi)) \). It is easy to see that \(D'(\varphi) \leq \frac{\partial}{\partial \varphi} V_T(r, \varphi) < \beta \frac{\partial}{\partial \varphi} V_T(r, \varphi) < 0 \) because \(D'(\varphi) < 0 \), by assumption and \(\Pr(u_T(r) + \varepsilon_T < D(\varphi)) \in (0, 1) \). Also, note that \(\frac{\partial}{\partial r} V_T(r, \varphi) < 0 \) implies \(\frac{\partial}{\partial r} \Pr(u_T(r) + \varepsilon_T < D(\varphi)) > 0 \), which means that \(\frac{\partial}{\partial r^2} V_T(r, \varphi) \leq 0 \). It is also easy to see that \(\frac{\partial}{\partial r} V_T(r, \varphi) < 0 \).

Now, assume \(\frac{\partial}{\partial \varphi} V_{t+1}(r, \varphi) \leq 0, \frac{\partial}{\partial \varphi} V_{t+1}(r, \varphi) \leq 0, \text{ and } D'(\varphi) \leq \beta \frac{\partial}{\partial \varphi} V_{t+1}(r, \varphi) < 0 \) for some \(t \). Then,

\[
\frac{\partial}{\partial \varphi} V_t(r, \varphi) = \frac{\partial}{\partial \varphi} \int \max\{u_t(r) + \varepsilon_t + \beta V_{t+1}(r, \varphi), D(\varphi)\} dF_{\varepsilon_t}(\varepsilon_t)
= \frac{\partial}{\partial \varphi} \beta V_{t+1}(r, \varphi)(1 - \Pr_t(r, \varphi)) + D'(\varphi) \Pr_t(r, \varphi) \geq D'(\varphi),
\]

where \(\Pr_t(r, \varphi) = \Pr(u_t(r) + \varepsilon_t + \beta V_{t+1}(r, \varphi) < D(\varphi)) \). The last inequality holds since \(\frac{\partial}{\partial \varphi} V_{t+1}(r, \varphi) \geq D'(\varphi) \). Again, it is easy to see \(\frac{\partial}{\partial \varphi} V_t(r, \varphi) < 0 \), and \(\frac{\partial}{\partial \varphi} V_t(r, \varphi) \leq 0 \). To see that \(\frac{\partial}{\partial \varphi} V_t(r, \varphi) \leq 0 \), note that

\[
\frac{\partial}{\partial r \partial \varphi} V_t(r, \varphi) = \frac{\partial}{\partial r} \left[\frac{\partial}{\partial \varphi} \beta V_{t+1}(r, \varphi)(1 - \Pr_t(r, \varphi)) + D'(\varphi) \Pr_t(r, \varphi) \right]
= \frac{\partial^2}{\partial r \partial \varphi} \beta V_{t+1}(r, \varphi)(1 - \Pr_t(r, \varphi)) + \frac{\partial}{\partial r} \Pr_t(r, \varphi) \times (D'(\varphi) - \frac{\partial}{\partial \varphi} \beta V_{t+1}(r, \varphi)) \leq 0.
\]

By induction we conclude that \(\frac{\partial}{\partial \varphi} V_1(r, \varphi) \leq 0 \). ■

Proposition 1 If \(\frac{\partial}{\partial s} \Pr(s) > 0 \) and \(F(r|s) \text{ FOSD } F(r|s') \) for \(s' > s \), then we have SCP, i.e.,

\[
\frac{\partial^2}{\partial s \partial \varphi} V_0(s, \varphi) = \frac{\partial^2}{\partial s \partial \varphi} \left[\Pr(s) \int V_1(r, \varphi)f(r|s)dr + (1 - \Pr(s))\lambda(\varphi) \right] < 0.
\]

Proof. First, let us consider the second term. Note that \(\frac{\partial^2}{\partial s \partial \varphi} (1 - \Pr(s))\lambda(\varphi) = -\Pr'(s)\lambda'(\varphi) < 0 \). This is because \(\Pr'(s) > 0 \) and \(\lambda'(\varphi) > 0 \) by assumption. Second, we consider the first term. Note that for \(s_0 < s_1 \), \(F(r|s_1) \) first-order stochastically dominates \(F(r|s_0) \). Hence if \(\frac{\partial}{\partial \varphi} V_1(r, \varphi) \) is non-increasing in \(r \), then \(\int \frac{\partial}{\partial \varphi} V_1(r, \varphi)f(r|s_0)dr \geq \int \frac{\partial}{\partial \varphi} V_1(r, \varphi)dF(r|s_1) \) for any \(s_0 \) and \(s_1 \) s.t. \(s_0 < s_1 \). This implies that \(\frac{\partial}{\partial \varphi} \Pr(s) \int V_1(r, \varphi)dF(r|s) \leq 0 \). Thus, we complete the proof. ■

A.2 Proof of Proposition 2

Suppose that the lender bids an interest rate, \(r_j \), that is higher than \(r^0 \) (the interest rate at which the lender is indifferent between lending and not lending). If the final contract interest \(r \) turns out to be above \(r_j \), then the lender funds a loan at \(r \) regardless of whether she bid \(r^0 \) or \(r_j \). If the contract interest \(r \) turns out to be less than \(r^0 \), then the lender does not get to fund the loan, regardless of
whether she bid r^0 or r_j. The only circumstance under which bidding r_j or r^0 makes a difference is when the final contract interest rate is between r^0 and r_j. In this case, the lender will be able to lend at a rate equal to r if she bids r^0, while she will not be able to lend if she bids r_j. Since lending at $r \in [r^0, r_j]$ gives the lender higher utility than not funding the loan, setting the rate equal to r^0 weakly dominates setting it to r_j. Likewise, it is also easily shown that submitting a bid that is lower than r^0 is weakly dominated by bidding r^0.

A.3 Proof of Proposition 4

In this Appendix, we provide a proof of identification of $F_{\varphi|X}$, $F_\epsilon|X$, and $\lambda(\varphi)$. We first note that we can normalize one of the constants in u_t without loss of generality: Hence we set $d_T = 0$.\footnote{If we set $d_t = d_t + \kappa (\forall t) \bar{\epsilon}_t = \epsilon_t - \kappa (\forall t)$, it will be observationally equivalent to d_t, $F_\epsilon|X$.} Also, we can normalize the location of $F_{\varphi|X}$ at one point: Hence, we set $F_{\varphi|X_*}^{-1}(\alpha^*) = 0$ for some $\alpha^* \in (0, 1)$ and X^*.\footnote{Given that $D(\varphi) = -\varphi$, if we set $\bar{\epsilon}_t = \epsilon_t + \kappa (\forall t)$, $\bar{F}_{\varphi|X}(h) = F_{\varphi|X}(h + \kappa)$, $\bar{d}_T = d_T$, $\bar{d}_t = d_t - \beta \kappa (t \in \{1, ..., T-1\})$ and $\lambda(\varphi) = \lambda(\varphi) + \beta \kappa$, it will be observationally equivalent to ϵ_t, d_t, $F_{\varphi|X}$, and λ. This normalization is convenient for proving identification, but we use an equivalent normalization (i.e., $Med[\epsilon_t|X] = const.$) for our estimation.} In what follows, we consider the case when there is no pooling. The Online Appendix contains the proof for the case when there is partial pooling.

Consider the repayment decision of the borrower with $F_{\varphi|X_*}^{-1}(\alpha^*) (= 0)$ at period $t = T$. The borrower’s problem is as follows:

$$
\begin{cases}
\text{repay: if } - (r \times x_{amt}^*) + \epsilon_T \geq - F_{\varphi|X_*}^{-1}(\alpha^*) = 0 \\
\text{default: otherwise},
\end{cases}
$$

where x_{amt}^* is an element of X^*. This is simply a binary threshold-crossing model; hence using variation in r, we can nonparametrically identify the conditional distribution of ϵ_T given X^*, i.e., $F_\epsilon|X_*$. Once $F_\epsilon|X_*$ is identified, we can identify $F_{\varphi|X_*}^{-1}(\alpha)$ for all α given X^* by conditioning the sample on the α-quantile of s given X^* (i.e., samples with $s = F_{\varphi|X_*}^{-1}(\alpha)$.\footnote{Here, we are using the fact that $\varphi \perp \epsilon|X^*$.} This is because $F_{\varphi|X_*}^{-1}(\alpha)$ is just a constant term in the binary threshold-crossing model where the distribution of ϵ_T given X^* has already been identified.

Now consider the $t = T - 1$ period problem with $X = X^*$:

$$
\begin{cases}
\text{repay: if } - (r \times x_{amt}^*) + d_{T-1} + \beta V_T(r, F_{\varphi|X_*}^{-1}(\alpha)) + \epsilon_{T-1} \geq - F_{\varphi|X_*}^{-1}(\alpha) \\
\text{default: otherwise},
\end{cases}
$$

where $V_T(r, F_{\varphi|X_*}^{-1}(\alpha))$ and $F_{\varphi|X_*}^{-1}(\alpha)$ have already identified. Similarly as before, we can nonparametrically identify the distribution of $(\epsilon_{T-1} + d_{T-1})$ and the value of β using variation in r, given
that this is a simple binary threshold crossing model. It should be clear that \(\{ \epsilon_t + \delta_t \}_{t \leq T - 2} \) can also be identified by looking at the borrower’s period \(t \) problem and the associated default probability.

Now, we discuss how to identify \(\lambda(\varphi) \). Rearranging the borrower’s FOC in equation (7) evaluated at \(X = X^* \) and solving for \(\lambda(\varphi) \), we obtain

\[
\lambda(\varphi) = \int V_1(r, \varphi; X^*) f(r|s; X^*) dr + \frac{\Pr(s; X^*)}{\Pr(s; X^*)} \int V_1(r, \varphi; X^*) \frac{\partial}{\partial s} f(r|s; X^*) dr, \tag{2}
\]

where we have made the dependence on \(X^* \) explicit. Note that all the terms on the right hand side are identified. First, \(V_1 \) is identified given that \(F_{\epsilon|X^*}, F_{\varphi|X^*}, \) and \(\beta \) have already been identified. Also, we know that borrowers of type \(\varphi \) submit a reserve rate equal to \(s(\varphi; X^*) = F_{s|X^*}^{-1}(F_{\varphi|X^*}(\varphi)) \). Then evaluating \(\Pr(s; X^*) \) and \(f(r|s; X^*) \) – which are both directly observed in the data – at \(s(\varphi; X^*) \), we can identify the right-hand side of the equation. Hence the previous equation identifies \(\lambda(\varphi) \).

Lastly, we show that \(F_{\varphi|X} \) and \(F_{\epsilon|X} \) are identified for any \(X \). To see that \(F_{\varphi|X} \) and \(F_{\epsilon|X} \) are identified for any \(X \), note that it is enough to identify \(F_{\varphi|X}(0) \) – if \(F_{\varphi|X}(0) \) is identified, we can follow the same steps as above to identify \(F_{\varphi|X} \) and \(F_{\epsilon|X} \). In order to see that \(F_{\varphi|X}(0) \) is identified, consider a given profile, \((F_{\epsilon|X}^*, F_{\varphi|X}^*, \lambda^*, \delta_t^*)\). Note that the set of profiles that are observationally equivalent to \((F_{\epsilon|X}^*, F_{\varphi|X}^*, \lambda^*, \delta_t^*)\) are given by \(\{(F_{\epsilon|X}, F_{\varphi|X}, \lambda, \delta_t) : F_{\epsilon|X}(h) = F_{\epsilon|X}^*(h - \kappa), F_{\varphi|X}(h) = F_{\varphi|X}^*(h + \kappa), d_T = d_T^*, d_t = d_t^* - \beta \kappa (t < T), \lambda(\varphi) = \lambda^*(\varphi) + \beta \kappa\} \). Given that we have already identified \(\lambda(\varphi) \), we can identify \(F_{\varphi|X}(0) \). This concludes the proof of identification when there is no pooling. In the Online Appendix we also discuss the case when there is pooling at \(s = 36\% \).

References

