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• The note has been simplified. In Section 2 we have deleted: (a) all the equations related to the objective functions; (b) the expressions that lead to the
definition of the asymptotic variance of the maximum likelihood estimator; (c) the general expression for the linear model.

• The note now emphasizes the efficiency issues instead of the optimal weights, and stresses that the efficiency improvements pertain both estimators.
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a b s t r a c t

In this note we analyze efficiency improvements over the Gaussian maximum likelihood (ML) estimator
for frequency domainminimumdistance (MD) estimation for causal and invertible autoregressivemoving
average (ARMA)models. The analysis complements Velasco and Lobato (2017)where optimalMD estima-
tion,which employs information in higher ordermoments, is studied for the general possibly non causal or
non-invertible case.We considerMDestimation that combines in twomanners the information contained
in second, third, and fourthmoments.We show that for bothMDestimators efficiency improvements over
the Gaussian ML occur when the distribution of the innovations is platykurtic. In addition, we show that
asymmetry alone is not associated with efficiency improvements.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In a recent article Velasco and Lobato (forthcoming, VL here-
inafter) propose optimal minimum distance techniques for esti-
mating general (possibly non invertible and/or non causal) linear
time series models. Non-causal or non-invertible ARMA models
have been recently emphasized in economics, see Alessi et al.
(2011) or Leeper et al. (2013). VL propose frequency domain
techniques to combine the information about the parameters of
interest contained in second, third and fourth moments. A main
objective in VL is the identification of the parameters of interest,
an so, the information contained in third and fourth moments is
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crucial in the general case that allows for non causal or non in-
vertible solutions. For efficiency, second, third and fourthmoments
are in principle relevant even under assumptions on causality and
invertibility.

Estimation in VL is based on minimizing the distance between
the model reflected in the (higher-order) spectral densities and
the data reflected in their sample analogues, the (higher order)
periodograms. VL considered two estimators. First, one that min-
imizes a weighted average of three individual objective functions
(OF) based on the second, third and fourth moments, respectively.
Second, an estimator that automatically combines the individual
scores instead of the corresponding OF. The advantage of the first
estimator is that it allows to derive explicit expressions for the
optimal weights for each individual OF in the particular case of
invertible and causal ARMAmodels. These optimal weights illumi-
nate the cases where efficiency improvements over the Gaussian
ML can be expected. The second estimator is theoretically opti-
mal and, in addition, VL showed that it presents a better finite
sample performance than the Gaussian maximum likelihood (ML)
estimator in some situations. In particular, in VL it was noticed that
in finite samples efficiency improvements are typically associated
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with innovations with platykurtic distributions. However, in VL
there is not a theoretical basis to support this result. The reason is
that this second estimator automatically combines the information
contained in second, third and fourth moments, preventing the
assessment of each individual contribution.

The structure of this note is the following. Section 2 contains
notation and some relevant results fromVL, and Section 3 provides
the analysis on efficiency improvements associated to optimal MD
weights.

2. Preliminaries

Consider a causal and invertible ARMA(p, q) models

α(L)Yt = µ + β(L)εt ,

where εt is an independent identically distributed (iid) sequence
with zero mean, variance κ2 > 0, and bounded eighth moment.
The polynomials α(L) = 1 −

∑p
j=1αjL and β(L) = 1 +

∑q
j=1βjL

are of order p and q, respectively, have all their roots outside the
unit circle, and do not have any common roots. This model estab-
lishes a structure on the linear dependence of Yt in terms of some
parameter vector θ ∈ Rp+q, and the target is the estimation of θ.

VL consider the general case where the polynomials α(L) and β(L)
may also have some roots inside the unit circle. For completeness
in notation we call κk to the kth order cumulant of εt , and we also
introduce the standardized cumulant of order k,

νk =
κk

κ
k/2
2

,

so that, ν3 and ν4 are the skewness and kurtosis coefficients, re-
spectively. In addition, call µ̄4 = µ4/κ

2
2 = ν4+3, µ̄5 = µ5/κ

5/2
2 =

ν5 + 10ν3 and µ̄6 = µ6/κ
3
2 = ν6 + 10ν2

3 + 15ν4 + 15 to the
standardized fourth, fifth and sixth moments, respectively.

Following Brillinger (1985) and Terdik (1999), among others, VL
considered employing MD estimators in the frequency domain. In
particular, in order to make inference on the parameter vector θ,

VL initially consideredMDestimators based on the normalized dis-
tance between the data, reflected in the higher-order periodogram,
and the model, reflected in the parameterization of the spectral
density of order k. Denote by L∗

kT (θ ) the individual OF based just
on the information associated to the kth cumulant.

VL considered two manners of combining the information con-
tained in the higher order cumulants so that identification in the
general non causal non invertible case, and potential efficiency
improvements could be achieved.

The first approach is to construct a general OF by weighting the
individual OF, L∗

kT (θ ). In particular, VL initially propose as estimator
of θ the minimizer of

L∗

wT (θ ) = w2L∗

2T (θ ) + w3L∗

3T (θ ) + w4L∗

4T (θ ),

where w = (w2, w3, w4)
′ are some non negative weights to

be chosen. This estimator, called θwT , is consistent as long as∑4
j=3wjν

2
j > 0. Note that this condition allows for some zero

cumulants and weights. It is also asymptotically normal, and, in
order to express its asymptotic variance, denote the asymptotic
variance of the Gaussian ML estimator by Φ−1

0 , for an expression
of this variance see for instance Theorem 10.8.2 in Brockwell and
Davis (1991). Then, the asymptotic variance of θwT is given by
Σ−1

0 Ω0Σ
−1
0 where

Σ0 = Σ0(w) =
(
w2 + w3ν

2
3 + w4ν

2
4

)
Φ0,

and

Ω0 = Ω0
(
w

)
=

4∑
j,k=2

wjwkVj−1,k−1,

where Vj,k denote the elements of the matrix V, which is given by

V =

⎛⎝ 1 ν2
3 µ̄4ν4

ν2
3 ν2

3 (2 + ν4) ν3ν4 (µ̄5 − ν3)

µ̄4ν4 ν3ν4 (µ̄5 − ν3) ν2
4

(
µ̄6 − ν2

3

)
⎞⎠ ⊗ Φ0.

Note that when w = (1, 0, 0) , the asymptotic variance of θwT is
Φ−1

0 . In fact, VL showed that the estimator based on minimizing
L∗

2T (θ ) is asymptotically equivalent to the Gaussian ML estimator.
In addition, in VL it was noted that θwT can be asymptotically
more efficient than the Gaussian ML estimator in some circum-
stances for some weighting schemes. The disadvantage of θwT is
that it is impossible to derive optimal weights for the possibly
non-invertible non-causal case because in that general case the
asymptotic variance is not proportional to Φ−1

0 .
The second approach is to construct a MD estimator based on

the three scores of the individual OF, L∗

kT (θ ). This is the manner
eventually recommended in VL. This estimator, called θ̂T , is con-
sistent and efficient. In particular, its asymptotic variance is given
by (H′V−H)−1, where V− is a generalized inverse of the matrix V,
and, for the causal and invertible case, H =

(
1, ν2

3 , ν2
4

)′
⊗ Φ0.

Remarks 4 and 5 in VL show that θ̂T is asymptotically at least as
efficient as θwT for any choice of the weights w.

From a practical point of view, the clear advantage of θ̂T is
that there is no need of choosing explicitly the optimal weights
for the scores since they are automatically optimally weighted.
However, since optimal weights are only implicit there is not a
clear understanding about under which circumstances efficiency
improvements can be expected with respect to the Gaussian ML
estimator. The simulations results in VL indicate that for platykur-
tic distributions the θ̂T estimator typically presents finite sample
efficiency improvements respect to an (unfeasible) Gaussian ML
estimator that presumes identification, whereas for leptokurtic
distributions that advantage disappears. It also appears that asym-
metry does not seem to play any significant role for efficiency in
simulations.

3. Optimal selection of weights for invertible and causal ARMA
models

In this section we target to analyze the optimal weights for the
first estimator proposed in VL. Given Theorem 3 in VL, it is possible
to derive the optimalweights (w2, w3, w4) in the sense ofminimiz-
ing the asymptotic variance of θwT for a given value of the higher
order cumulants (ν3, ν4, ν5, ν6) when the model is invertible and
causal, since in this case the problem reduces to a univariate one.
This analysis is not reported here since the expressions for the
optimal weights are complicated and not intuitive. Here, instead,
we will provide three lemmas with the particular cases that occur
when we set one weight equal to zero. This analysis is interesting
since relatively simple and intuitive solutions are available for
these estimators that employ only the information contained in
two moments.

Lemma 1 considers the case of the optimal selection of w2 and
w3 whenw4 is restricted to be zero. This result is of interest since it
shows that adding L∗

3T (θ ) to L∗

2T (θ ) cannot make any improvement
from an efficiency point of view. Hence, asymmetry alone does not
improve efficiency.

Lemma 2 addresses the case where w3 is restricted to 0, for
instance, due to anticipation of symmetric innovations. This case
is of interest because for the platykurtic case (ν4 < 0), employing
the optimal w4 delivers an estimator whose asymptotic variance
is lower than the one for the Gaussian ML estimator. The gain in
efficiency depends on the specific values for the cumulants. In the
other situation, the leptokurtic case (ν4 > 0), Lemma 2 shows
that there cannot be efficiency improvements with respect to the
Gaussian ML estimator.
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For completeness, Lemma 3 considers the case where w2 is
restricted to be 0.

Proofs of the lemmas are in Appendix.

Lemma 1. Restricting to the weights (w2, w3, w4) = (1, w3, 0) , the
optimal value for w3 is w∗

3 = 0.

Lemma 2. Restricting to the weights (w2, w3, w4) = (1, 0, w4) , if
ν4 ̸= 0, the optimal value for w4 is

w∗

4 = max

{
3

ν2
4 µ̄4 − ν4

(
µ̄6 − ν2

3

) , 0

}
.

It is immediate to see that w∗

4 is positive when ν4 < 0 because
µ̄4 > 0 and µ̄6 − ν2

3 > 0, which implies that the information
contained in fourth order cumulants should be employed if the
distribution tails of the innovations are lighter than the Gaussian
ones. In this case the asymptotic variance of θwT is lower than
that of the Gaussian ML estimator. The gain in efficiency varies
according to the distribution of εt , as commented above.

When ν4 > 0, there are not possible gains from using fourth
order cumulants since for w∗

4 to be positive one would need
ν4

(
µ̄6 − ν2

3

)
< ν2

4 µ̄4 or equivalently

µ̄6 − ν2
3

µ̄2
4

<
ν4

µ̄4
=

µ̄4 − 3
µ̄4

,

where the right hand side is smaller than one. However, the left
hand side can be shown to be no lower than 1 (e.g. Corollary 1 in
VL) and, therefore, w∗

4 cannot be positive when ν4 > 0.

Lemma 3. Restricting to the weights (w2, w3, w4) = (0, 1, w4) , if
ν3ν4 ̸= 0, the optimal value for w4 is

w
†
4 = max

{
ν3ν4 (µ̄4 − 1) − ν2

3 (µ̄5 − ν3)

ν3ν4
(
µ̄6 − ν2

3

)
− ν2

4 (µ̄5 − ν3)
, 0

}
.

In principle w
†
4 can be positive either when ν4 < 0 or when

ν4 > 0, depending on the values of ν3, ν5 and ν6. The weights w
†
4

are positive, for instance, for the case ν4 < 0 when ν3 and ν5 have
the same sign, since in this case both numerator and denominator
are negative. In particular, if ν3 > 0 and ν5 > 0, the numerator can
be written as

ν3
{
ν4 (µ̄4 − 1) − 9ν2

3

}
− ν2

3ν5 < 0,

because µ̄5 = ν5 + 10ν3, and µ̄4 − 1 = ν4 + 2 > 0 because
ν4 > −2, while the denominator is

ν3
{
ν4

(
µ̄6 − ν2

3

)
− 9ν2

4

}
− ν2

4ν5 < 0

because µ̄6 − ν2
3 > 0 by Cauchy–Schwarz inequality.

Remark. The previous lemmas showed that adding the informa-
tion contained in third moments does not improve on efficiency
with respect to the Gaussian ML estimator, but adding the infor-
mation contained in fourth moments leads to a θwT estimator that
is more efficient than the Gaussian ML estimator in the platykurtic
case. Evaluation of the asymptotic variance of the efficient θ̂T
estimator, (H′V−H)−1, at the specific situations of symmetric inno-
vations (ν3 = 0) or zero excess kurtosis (ν4 = 0) provides similar
messages. In particular, imposing ν4 = 0, then (H′V−H)−1

= Φ−1
0 ,

confirming Lemma 1 in that the value of ν3 does not play any role
for efficiency on its own. In addition, imposing ν3 = 0 on the
asymptotic variance, (H′V−H)−1, leads to a factor in front of Φ−1

0

that is (µ̄6− µ̄2
4)/ (µ̄6−2ν4µ̄4+ν2

4 ). This factor is less than 1when
ν4 is negative, corroborating the results in Lemma 2.

Appendix

Proof of Lemma1. For this case the asymptotic variance of the θwT
estimator is given by

1 + 2w3ν
2
3 + w2

3ν
2
3 (ν4 + 2)

1 + 2w3ν
2
3 + w2

3ν
4
3

Φ−1
0 .

The factor in front ofΦ−1
0 is always larger than 1 ifw3 > 0 because

ν4 + 2 = µ̄4 − 1 ≥ ν2
3 > 0, see Rao (1973, p.143). □

Proof of Lemma 2. For this case the asymptotic variance is given
by

1 + 2w4ν4µ̄4 + w2
4ν

2
4

(
µ̄6 − ν2

3

)
1 + 2w4ν

2
4 + w2

4ν
4
4

Φ−1
0 .

Minimizing the factor in front of Φ−1
0 with respect to w4,

provides the FOC (as long as ν4 ̸= 0),

0 = ν4 − µ̄4 + µ̄4ν
2
4w4 + ν2

3ν4w4 − ν4µ̄6w4,

so that

w∗

4 =
−3

ν4
(
µ̄6 − ν2

3 − µ̄2
4 + 3µ̄4

) =
−3

ν4
(
µ̄6 − ν2

3 − µ̄4ν4
) ,

which is positive when ν4 < 0 because µ̄6 − ν2
3 > 0 and µ̄4ν4 <

0. □

Proof of Lemma 3. In this case the asymptotic variance is given by

ν2
3 (µ̄4 − 1) + w2

4ν
2
4

(
µ̄6 − ν2

3

)
+ 2w4ν3ν4 (µ̄5 − ν3)(

ν2
3 + w4ν

2
4

)2 Φ−1
0 .

Minimizing the factor in front of Φ−1
0 with respect to w4, provides

the FOC:

− 2ν3
ν4(

ν2
3 + w4ν

2
4

)3 (
ν3
3 − ν3ν4 − ν2

3 µ̄5 − ν3ν
2
4w4 + µ̄5ν

2
4w4

+ ν3
3ν4w4 + µ̄4ν3ν4 − ν3ν4µ̄6w4

)
= 0,

so that, when ν3ν4 ̸= 0, gives the expression for the optimal
weights

w
†
4 =

ν3ν4 (µ̄4 − 1) − ν2
3 (µ̄5 − ν3)

ν3ν4
(
µ̄6 − ν2

3

)
− ν2

4 (µ̄5 − ν3)
,

when the right hand side is positive, and the lemma follows. □
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