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Abstract

Studies of strategic sophistication in experimental normal form
games commonly assume that subjects’ beliefs are consistent with in-
dependent choice. This paper examines whether beliefs are consistent
with correlated choice. Players play a sequence of simple 2×2 normal
form games with distinct opponents and no feedback. Another set
of players, called predictors, report a likelihood ranking over possible
outcomes. A substantial proportion of the reported rankings are con-
sistent with the predictors believing that the choice of actions in the
2×2 game are correlated. The extent of correlation over action pro-
files varies systematically between the type of games (i.e., prisoner’s
dilemma, stag hunt, coordination, and strictly competitive) as well
as the kind of payments within each type of game (i.e., high vs. low
deviation payoffs and symmetric vs. asymmetric payoffs).

1 Introduction

Suppose one is to predict the outcome of a 2×2 symmetric coordination
game played by two players. The game has two Nash equilibria in pure

∗TC: Purdue University; cason@purdue.edu. TS: Instituto Tecnológico Autónomo de
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strategies. A game theorist would perhaps predict the outcome is one of
the Nash equilibria. Alternatively, being uncertain about which Nash equi-
librium players coordinate on, one may simply predict that each of the two
Nash outcomes occur with probability 1

2
. In game theoretic terms, in this

case we would say that the predictor believes that the players are playing
a correlated equilibrium. Just as predicting Nash equilibrium play is justi-
fied by the predictor believing that players choose strategies independently
and have mutual knowledge of the game, rationality and conjectures, pre-
dicting correlated play is justified by believing in other forms of knowledge
hierarchies that induce correlated choice of strategies (Brandenburger and
Friedenberg, 2008). Aumann (1974) provides a simpler construct to justify
correlated play, explained below in Section 2.3.

The assumptions behind players playing according to a Nash or correlated
equilibrium are questionable, and may even seem to be “magical” for some.
This is especially so in a controlled laboratory environment where agents are
anonymously and randomly matched. Hence, one may simply discard the
notion that predictors of game play would predict Nash or correlated out-
comes. Alternately, one may wish to know whether predictors’ beliefs are “as
if” like those postulated. The predictors’ beliefs, no matter their source, are
important because they could possibly determine how the predictor would
play a game were she a participant. In this paper we address the follow-
ing questions. How do individuals predict the behavior of others? What do
their beliefs look like? Are the predictions independent or correlated distri-
butions over outcomes? Are the beliefs consistent with Nash or correlated
equilibrium?

A basic difference between Nash and correlated play is that the former
induces an independent distribution over outcomes, whereas the distribution
induced by the latter is correlated. We subject our scrutiny to this aspect
of the difference. Outside of laboratory there are always various possibilities
for coordinating actions. Inside the laboratory, however, this possibility can
be effectively curtailed. Such curtailment allows us to subject predictions
to a real stress test. In our experiment, predictions based on independent
distributions are given the best chance of succeeding. Our players interact
anonymously and independently. We develop a novel procedure which allows
subjects to verify that they are matched independently. Another group of
subjects, aware of this matching procedure, then predicts the outcome of their
play. Surprisingly, we find overwhelming support for correlated predictions in
the data. Our subjects make predictions “as if” they believe in players using
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Aumann’s explicit correlation device or that players have complex interactive
knowledge structures like those in Brandenburger and Friedenberg (2008).

An important question that arises is: how would players behave were they
to believe that their opponents have correlated beliefs? The answer would
depend on whether actions affect payoffs or not. Consider an example from
Rubinstein and Salant (2014) where three firms decide on whether to enter
a market or not. A firm which enters gets payoffs of G, 0 and −B if no other
firm enters, only one other firm enters and both opponents enter. Under a
symmetric Nash equilibrium, the ratio of the entry to non-entry probability

is
(
G
B

) 1
2 , whereas under symmetric correlated beliefs the ratio of the entry to

non-entry probability is
(
G
B

)
.

The difference in entry rates is purely driven by beliefs, and hence one
would prefer to elicit beliefs in such a framework. However, eliciting beliefs
in rich environments, where beliefs, actions and payoffs are inter-related, is
a difficult exercise. To get at beliefs in a clean and direct manner we com-
promise and choose a framework which is not as rich as one would possibly
prefer. In particular, the actions of the predictor, in our experiments, do not
affect the payoffs of other players. Thus, ours is a first pass at the problem.
However, even with such restrictions, these beliefs could be of significant eco-
nomic relevance. Economic decisions are often based on predictions about
the behavior of others. And in many instances, the decision-makers own im-
pact on the outcome is negligible. For instance, a financial analyst will base
his stock recommendation on an anticipated market conditions. Decisions to
expand a business will in part depend on future political alliances or regu-
lations. Choosing a neighborhood to live in will depend on expected crime
rates and traffic congestion.

Consider the following example (modified from Aumann, 1974).1 A ven-
ture capitalist (V ) has to choose between three projects. Given a project,
the managing partners have to choose their management strategies. The
outcomes of the three projects are given below.

6, 6, 3 2, 5, 0
5, 2, 0 4, 4, 0

6, 6, 2 2, 5,−2
5, 2,−2 4, 4, 2

6, 6, 0 2, 5, 0
5, 2, 0 4, 4, 3

V chooses a matrix, the first manager chooses a row and the second manager
chooses a column. In each cell, the manager’s payoffs are given by the first
two numbers and the third number is V ’s payoff. Note that V ’s actions do

1See examples 2.4 and 2.5 in Aumann (1974).
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not affect the payoffs of the managers. If V believes that the managers play
according to some (unknown) Nash equilibrium, the middle project would
never be chosen. However, if V were to believe that the actions of the two
managers are correlated in a manner that each of the two outcomes along
the (6, 6)-(4, 4) diagonal occur with probability 1/2, then choosing the middle
project becomes optimal for V . Note that V ’s choice is primarily dictated by
her beliefs. In Section 1.1, we list other papers that illustrate stark results
induced by correlated beliefs.

We elicit beliefs in the form of likelihood rankings. To illustrate our
procedure, consider a variant of the previous example. Let the managers’
strategies be labeled as below.

Left Right
Up 6, 6 2, 5

Down 5, 2 4, 4

Let V be required to rank the likelihood of the four outcomes of the game,
from most likely to least likely to occur. Equal ranks, indicating indifference,
are permitted. A prediction that (Up, Left) and (Down, Right), for example,
are both more likely than (Up, Right) and (Down, Left), indicates that the
V believes the actions of the managers are correlated. Other rankings are
consistent with independent play, such as predicting that all outcomes are
equally likely or that only (Up, Left) is likely.

To our knowledge, our data provides the cleanest evidence to date on
correlated beliefs. Predictions are in the form of a likelihood ranking over
the games’ four outcomes. Likelihood rankings, like preference orderings, are
taken as primitives in choice theory. They are also easy to elicit through a
simple incentivized process. Eliciting probability distributions when subjects
are not necessarily expected utility maximizers is a complex task (Schlag and
Tremewan, 2015; Hossain and Okui, 2013). Likelihood rankings, on the other
hand, are easier to elicit (we show this in Section 2.1). Although likelihood
rankings provide a coarse measure of underlying probability beliefs, there
exists a class of rankings that are consistent with only correlated distributions
(see Fact 1 in Section 2.2).

In our experiment, 24 subjects (players) were paired up and interacted
with a new opponent (i.e., perfect stranger matching) in each of 11 differ-
ent 2×2 games. The players received no feedback between games that could
lead to any correlation, and outcomes were revealed at the end of a session
through a credible “public” procedure (see Section 3). We included three
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prisoner’s dilemma games, three stag-hunt games, three coordination games
and two strictly competitive games. Another set of 53 subjects (predictors)
were later asked to rank the likelihood of outcomes in the 11 games that had
already been played. Predictors went through the same set of instructions
and practice rounds as the actual players in the initial (game play) Behavior
session. The instructions included photographs documenting the procedures,
to highlight the independence of the row and column player choices. Never-
theless, in almost all games at least 60% of predictors stated rankings that
were consistent with only correlated distributions over outcomes. This is the
most important finding of our paper.

A legitimate concern is whether subjects are at all able to report indepen-
dent rankings. To address this question, we ran additional control sessions
with 46 new predictors in which the outcomes of some of the games were
not determined by human players but rather by random draws from two
bingo cages (one representing the row and the other the column player).
Effectively, we induced a unique belief distribution that implied a unique in-
dependent ranking. The control sessions also included three games from our
main experiment (predicting outcomes determined by human participants)
that provided an additional within-subjects control. In these control ses-
sions, correlated rankings accounted for only about 4-11% of total reports.
This indicates that predictors are perfectly capable of reporting independent
rankings.

1.1 Related Literature

There is growing empirical support for the fact that subjects act as if they
believe the choices of others are correlated. Ho, Camerer and Weigelt (1998)
study learning dynamics in p-beauty contest games using a Stahl and Wil-
son (1995)-type model. They allow beliefs of players at individual cognitive
levels to be correlated. Their estimated correlation coefficient is significantly
positive and substantially improves the overall fit relative to a restriction of
independent beliefs. Costa-Gomes, Crawford and Iriberri (2009) use data
from the Van Huyck, Battalio and Biel (1990, 1991) coordination games to
evaluate the performance of some leading behavioral models, including the
quantal response equilibrium, the level-k/cognitive hierarchy model and the
noisy introspection model. Similar to Ho et al., they allow players to hold
correlated beliefs. For all of their model estimates, correlated beliefs fit bet-
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ter than a restriction to independent beliefs, thus providing a clear indication
that players may act in accordance with correlated beliefs.2

From the perspective of theory, correlated beliefs overturn some very well
known results. In finitely repeated anonymous games players often cooper-
ate in experimental settings. Independent choice of actions is not consistent
with such observations. Instead, Healy (2007) shows that this behavior is
consistent with stereotyping–letting beliefs over types of actions be corre-
lated. Bhargava, Majumdar and Sen (2015) show that with correlated be-
liefs, the well known Gibbard-Satterthwaite (impossibility) theorem breaks
down.3 The result of non-cooperation, with frequent signals in repeated
games (Sannikov, 2007), breaks down when signals are correlated (Rahman,
2014). Rubinstein and Salant (2016) show that decisions in an entry game
can change dramatically with correlated beliefs.4

Moving from beliefs to equilibria, experimental evidence on correlated
equilibria is scarce. Moreno and Wooders (1998) find support for correlated
equilibrium in three-player games via unstructured pre-play communication.
Cason and Sharma (2007) suggest that an impartial mediator, by sending
private messages to two players, can implement a correlated equilibrium as
long as there is mutual knowledge of rationality. Duffy and Feltovich (2010)
show that for the mediator’s suggestions to be followed, they have to be
derived from a correlated equilibrium. Conversely, under a strategy proof
matching mechanism, Guillen and Hing (2014) find that subjects respond to
mediated messages even though they should not. Palfrey and Pogorelskiy
(2017) also find support for correlated equilibrium in a voter turnout game
with communication within parties. Although our focus here is more on
beliefs than equilibria, we do provide some discussion on how these beliefs
may be generated from equilibrium considerations.

Somewhat related is the recent work on the false consensus effect (Offer-
man, Sonnemans, and Schram, 1996; Engelmann and Strobel, 2000; Vanberg,

2In a decision-theoretic setting, Epstein and Halevy (2017) distinguish between source
ambiguity (e.g., an ambiguous urn) and an ambiguity regarding the relationship between
sources (i.e., a degree of correlation between multiple ambiguous urns). They demonstrate
that uncertainly regarding the relationship between the sources is one of the determinants
of ambiguity aversion.

3Correlated beliefs lead to a domain restriction. Mandal and Parkes (2016) extend the
results of Bhargava et al. (2015).

4“Sunspots,” a correlating device, have been used to study phenomena such as bank
runs in macro models. Ennis and Keister (2010), for example, formulate policy responses
to such bank runs.
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2008a&b; Iriberri and Rey Biel, 2013; and Rubinstein and Salant, 2016).
This psychological bias occurs when individuals (often incorrectly) believe
that others make the same (or similar) choices as their own. Offerman et
al. and Iriberri and Rey Biel find support for the false consensus effect in
a binary version of a public goods game and for simple distributional tasks,
respectively. Engelmann and Strobel only find support for the “consensus
effect” rather than false consensus effect. In their experiment, subjects draw
disproportionately strong inferences from a small sample of others’ choices
and project those on everyone else. Consistent with the false consensus ef-
fect, Rubinstein and Salant observe that subjects are more likely to play
hawk in the hawk-dove game when believing the opponent plays hawk and
vice versa when the belief is dove.5 Vanberg (2008b) interprets these results
as outcomes of rational behavior in Aumann’s setting.

2 The Framework

In period 1, players R and C simultaneously choose from action sets {u, d}
and {l, r} respectively, to receive payoffs:

l r
u x11, y11 x12, y12

d x21, y21 x22, y22

Let O = {(u, l), (u, r), (d, l), (d, r)} ≡ {o1, o2, o3, o4} denote the set of out-
comes and let ô ∈ O be the realized outcome in period 1. The Predictor (P )
does not observe ô. Let b(oi) = bi, for oi ∈ O, be probabilities which repre-
sent P ’s beliefs over the period 1 outcome. We denote a belief distribution
by b.

l r
u b1 b2

d b3 b4

Let B be the set of possible beliefs.

5There is an established literature in strategic sophistication in normal form games,
e.g., see Costa-Gomes and Weizsäcker (2008), Rey Biel (2009), and Sutter, Czermak and
Feri (2010). Subjects are often found to best reply to their stated beliefs but the evidence
is mixed. In these experiments, all interactions are between two players so the belief about
the opponent’s actions does not admit any correlation. However, under the false consensus
effect, a player may believe that the opponent is likely to choose a similar action.

7



In period 2, player P chooses (reports) a likelihood ranking over O. For
our purpose, a ranking is a four dimensional vector k = (k1, k2, k3, k4) such
that kj ∈ {1, 2, 3, 4}. kj denotes the likelihood rank of outcome oj. For all k,
there exists an element ki which takes the value of 1. Furthermore, if ki 6= 1
is an element of k, then there exists kj in k which takes the value ki − 1.
That is, non consecutive ranks are not allowed. For example, k = (3, 1, 2, 4)
is a likelihood ranking which indicates that the outcome (u, r) ≡ o2 is most
likely to occur, followed by (d, l) ≡ o3, (u, l) ≡ o1 and (d, r) ≡ o4. We allow
for ties in reported rankings, i.e. the ranking (2, 1, 1, 3) is allowed. Let K be
the set of all rankings. For a given k let t(k) = (t1, t2, t3, t4) be the collection
of distinct outcomes such that t1 is the outcome with the highest rank in k;
t2 is the outcome with the second highest rank, and so on.

Given a ranking vector selected by P , her payoff is determined as:

Ranked outcome/actual outcome: Payoff:
t1 = ô π1

t2 = ô π2

t3 = ô π3

t4 = ô π4

where πi > πi+1. If the selected ranking includes a tie, and this tied ranking
matches the actual outcome, then the payoff equals one of the corresponding
rewards, each chosen with equal probability. For example let k = (2, 1, 1, 3)
be the chosen ranking, and suppose ô = (d, l). As the chosen outcome
matched one of the two outcomes ranked highest by P , her payoff would
be either π1 or π2, each chosen with equal probability. This completes the
description of the game.

2.1 Predictions

We are primarily interested in P ’s behavior. Recall from the previous section
that P has a belief over the outcomes in O, represented by some distribution
b ∈ B.

Assumption 1: P ’s belief is a distribution over outcomes induced by
some behavioral theory of the Period 1 stage game.

For example, if (u, l) were to be a Nash equilibrium then b = (1, 0, 0, 0)
is a consistent belief. We assume that beliefs can be coarsely represented by

8



rankings.6 Abusing notation, let the function k,

k : B → K

denote a representation. We assume that P has consistent rankings.

Definition 1: Ranking k is consistent with belief b if: [bi > bj] =⇒ [ki <
kj] and [bi = bj] =⇒ [ki = kj].

We shall now show that, given the payoffs of P in the previous section, our
elicitation process makes truthful revelation of likelihood ranking a (weakly)
dominant strategy.

Assume that P has preferences that respect (first order stochastic dom-
inance) FOSD ordering. Let w.l.g., P ’s belief be such that b1 ≥ b2 ≥ b3 ≥
b4. Hence P ’s true ranking is k = (k1, k2, k3, k4) where k1 ≥ k2 ≥ k3 ≥
k4. Reporting k, then induces a distribution over {π1, π2, π3, π4} such that
Pr(πi) = bi. Name this distribution F . Now suppose P reports k′ instead,
where k′ 6= k. Then, k′ induces a distribution such that Pr(πi) = b′i where
(b′1, b

′
2, b
′
3, b
′
4) is a permutation of (b1, b2, b3, b4). Name this distribution F ′. As

bl = min{bi | i ≤ l}, we have
4∑
i=l

b′i ≥
4∑
i=l

bi for all l ∈ {1, 2, 3, 4}. Hence, due

to FOSD, F ′ cannot be strictly preferred to F . Assuming that P reports the
truth when she is indifferent, we have that reporting k is a weakly dominant
strategy.

2.2 Correlated Rankings

In our game, P reports rankings and not beliefs b. Distributions can be
classified as independent or correlated on the basis of (say) the odds ratio. If
b = (b1, b2, b3, b4) where all the elements are strictly positive, then the odds
ratio δ (Agresti, 2002) is:

δ =
b1b4

b2b3

Observe that b is independent if and only if δ = 1. This is clearly a very
strict criterion. For one, among all beliefs, the measure of beliefs meeting
this criterion is zero. If we were to restrict bi to a discrete grid, such as

6Chapter 3 of Fishburn (1970) has details on the representation of likelihood orderings
by probability distributions.
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{0,.01,...,.99,1}, the smallest of mistakes (= .01) could turn an independent
belief to a correlated belief. Given the degree of noise in human probability
judgments, evaluating beliefs according to this criterion would likely produce
a large number of falsely correlated beliefs.

Rankings, on the other hand, offer a more “forgiving” and coarse measure
of beliefs in the following sense: two distributions, one independent and the
other correlated, may generate the same consistent ranking. As an example
consider b′ = (4

9
, 2

9
, 2

9
, 1

9
) and b′′ = (3

9
, 25

90
, 25

90
, 1

9
). Both are represented by the

ranking k = (1, 2, 2, 3), yet b′ is independent while b′′ is correlated.7 However,
there exist rankings which are generated by correlated and only correlated
distributions.

Fact 1. If k is consistent with belief b and: (i) k1 < k2 and k4 < k3, or;
(ii) k2 < k1 and k3 < k4, then b is correlated.

Proof: We prove (i), and the proof of (ii) is similar. Suppose k1 < k2

and k4 < k3. Since k is consistent with b we have that b1 > b2 and b4 > b3.
Suppose b is independent, then by definition of independence,

b1 > b2

⇐⇒ (b1 + b2)(b1 + b3) > (b1 + b2)(b2 + b4)

⇐⇒ (b1 + b3) > (b2 + b4) as (b1 + b2) > 0.

Similarly,

b4 > b3

⇐⇒ (b2 + b4)(b3 + b4) > (b1 + b3)(b3 + b4)

⇐⇒ (b2 + b4) > (b1 + b3) as (b3 + b4) > 0.

But we cannot have (b1 + b3) > (b2 + b4) and (b2 + b4) > (b1 + b3). QED

All other distinct rankings are consistent with at least one independent
belief b. This is easy to show. We provide just one example. Consider k such
that k1 > k2 > k3 > k4. This ranking is consistent with the independent
distribution b = (20

49
, 15

49
, 8

49
, 6

49
).

7For illustration, if beliefs were measured by probability numbers on a discrete grid as
described above, only 2.9% of these discrete beliefs are independent. For comparison, 49
(65%) of the 75 possible rankings that we elicit in our experiment would be classified as
independent.

10



Fact 1 motivates the following definitions.

Definition 2. k = (k1, k2, k3, k4) is said to be correlated if: either (i)
k1 < k2 and k4 < k3, or; (ii) k2 < k1 and k3 < k4

A subset of correlated rankings is intuitively appealing. In these rankings,
the highest ranks are provided to either (u, l) and (d, r) or (u, r) and (d, l)
(i.e. the diagonal outcomes).

Definition 3. k = (k1, k2, k3, k4) is said to be diagonally correlated if:
either (i) k1 < min{k2, k3} and k4 < min{k2, k3}, or; (ii) k2 < min{k1, k4}
and k3 < min{k1, k4}.

Definition 4. k = (k1, k2, k3, k4) is said to be circularly correlated if:
either (i) k1 < k2 < k4 < k3, or; (ii) k2 < k1 < k3 < k4.

Rankings that satisfy Definitions 3 or 4 exhaust the set of correlated
rankings. In passing we note that k, such that k1 = k2 = k3 = k4, is
consistent with only one distribution b = (1

4
, 1

4
, 1

4
, 1

4
), which is independent.

2.3 On P ’s behavior.

Recall that in period 1 of the game R and C play the following game.

l r
u x11, y11 x12, y12

d x21, y21 x22, y22

To predict outcomes in period 2, P has a model. For intuitive appeal, we let
this model be a slightly modified version of Aumann’s model. There is a set
of “states of the world” given by Ω = {ω1, ω2}. The predictor’s prior over
Ω is: Pr(ωi) = θi for i ∈ {1, 2}. Conditional on the occurrence of a state
of the world ωi, player R receives signal si1 ∈ {u′, d′} and C receives signal
si2 ∈ {l′, r′}, for i ∈ {1, 2}. Players do not get to see the realized state of the
world; they only see the signal. The predictor sees neither the realized state
of the world nor the signals received by the players.

Conditional on a given state, ωi, the signals si1 and si2 are independently
drawn with Pr(si1 = u′ | ωi) = piu and Pr(si2 = l′ | ωi) = pil, for i ∈ {1, 2}.
After receiving the signal, (the predictor believes that) players R and C play
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according to the signal. That is, if player R receives signal u′, he chooses
action u and so on. The predictor knows these probabilities. The full model
then generates a belief distribution b for player P .

l r

u b1 = θ1p
1
up

1
l + θ2p

2
up

2
l b2 = θ1p

1
up

1
r + θ2p

2
up

2
r

d b3 = θ1p
1
dp

1
l + θ2p

2
dp

2
l b4 = θ1p

1
dp

1
r + θ2p

2
dp

2
r

The model, as stated, can rationalize any belief of P ’s as we have not
taken a stand on R and C’s payoffs or rationality. However, correlated or
independent beliefs do have implications on the parameters θi, p

i
u and pil,

i ∈ {1, 2}. This is stated as Fact 2 below. The proof is simple and hence
omitted.

Fact 2: The belief distribution b is independent if and only if at least one
of the following conditions is satisfied.

(1) θ1 = 0 or θ2 = 0

(2) p1
l = p2

l or p1
u = p2

u

Fact 2 tells us that if the predicted distribution is independent, then the
predictor knows that for all players (but possibly one) the state of the world
is not relevant for choice. The converse also holds. So from now on, if Fact
2 does not hold then we shall say that P has multiple (state dependent)
conjectures about players’ choices.

Assumption 1 asserts that beliefs are consistent with distributions in-
duced by some behavioral theory. In terms of equilibrium (or “focal point”)
considerations, suppose for example that the predictor believes the players
coordinate on a particular Nash equilibrium. Then (1) or (2) is satisfied and
the predicted distribution is independent. On the other hand, suppose that
(u, l) and (d, r) are two pure strategy Nash equilibria (PNE). P could then
believe that (u, l) and (d, r) would each occur with probability 1

2
. That is

θ1 = θ2 = 1
2
, and p1

l = 1; p2
l = 0; p1

u = 1; and p2
u = 0. Fact 1, then, states

that P has correlated beliefs. This is indeed true as b is:

l r

u b1 = 1
2

b2 = 0

d b3 = 0 b4 = 1
2
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We can now state our main hypothesis. If the predicting subject were
to believe that only one state of nature is relevant, then she would hold a
single (state dependent) conjecture about how the game was played. By
Fact 2, then, P ’s likelihood ranking over the games’ outcomes would be
independent. We label this the single conjecture hypothesis (H-s). On the
other hand, were she to believe that both states of nature are relevant in the
sense that contingent on each state, players coordinate on the diagonal (as
above), then she would have diagonally correlated rankings (c.f., definition
3). Our multiple conjectures hypothesis (H-m) states that P has diagonally
correlated rankings. The hypothesis is justified if the game were to have two
PNEs with payoffs along the diagonal. Of course, instead of equilibria they
could simply be focal point outcomes.

3 Experimental Design and Procedures

The experiment had two parts: the Behavior part and the Prediction part. In
the Behavior part subjects played a series of games. Their behavior was later
predicted in the Prediction part by another set of participants. The Behavior
part involved a sequence of eleven 2×2 games and one 3×3 game.8 Games
were presented in normal form. Each subject was assigned a role of either
the Row or the Column player and kept the same role in all games. To help
promote subjects’ comprehension, we presented the games with color-coded
roles and strategies as shown in Figure 1.

For a clean test of our hypotheses it was important to make clear that
there was no possibility of repeated interactions and that matching could not
possibly depend on subjects’ previous choices.9 To address the first concern
we used perfect stranger matching. The Behavior session had 24 subjects
play the 12 games with different opponents, with no feedback provided be-
tween games. To address the second concern we developed an experimental
procedure to make the matching explicit and ex-post verifiable. In particu-
lar, each subject was identified by an ID number, and a record sheet at the
top of their computer screen showed throughout the experiment the prede-
termined matched partners’ IDs as well as the subject’s own actions for all 12

8The 3×3 game was added at the end of the sequence of 2×2 games as a matter of
curiosity. Following this game subjects also responded to one framed investment game.
The results from these last two games are not analyzed in this paper.

9If this were not the case, then actions could be correlated via the matching procedure.
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Figure 1: Game presentation

games. At the end of the experiment, the experimenter evaluated the games
in front of everyone by listing the matches and corresponding actions on the
main projector screen. Subjects were encouraged to verify that the informa-
tion on the projector screen (i.e., their actions and IDs of their opponents)
indeed matched the information displayed in their own record sheets. This
procedure ensured that the experimenter could not secretly manipulate the
matching.

The Prediction part of the experiment had four separate sessions. Overall
53 subjects participated in this part. For each game the primary task was
to predict the outcome of play for a randomly selected pair of players from
the Behavior session. To simplify this task, as explained in the previous sec-
tion, we asked predictors to rank the game’s outcomes in terms of subjective
likelihood of occurrence. For each game, the participant had to order the
outcomes in a descending order of likelihood from the most likely to the least
likely. Each outcome was assigned numbers from 1 (most likely) to 4 (least
likely) in the fields provided inside each cell of the decision matrix, i.e., see
Figure 2. As mentioned in Section 2.1, ties were allowed.

The ranking elicitation was incentivized in a simple way. For each game
we randomly selected a pair of subjects from the Behavior session. Their
choices represented the actual outcome (ô in Section 2.1). The predicting
subject then received a reward according to the following schedule:
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Figure 2: Ranking task

Guess/Outcome: Earning:
The most likely guess = actual outcome 9

Second most likely guess = actual outcome 6
Third most likely guess = actual outcome 3

Least likely guess = actual outcome 0

As mentioned earlier, we allowed for indifference by letting subjects as-
sign the same rank to multiple outcomes. If the actual outcome matched
one of the tied outcomes, then the payoff was randomly chosen from the
corresponding rewards.10 As shown in Section 2.2, this payment structure
provided proper incentives for a predictor to reveal her true ranking (condi-
tional on the subject having vN-M preferences).11

10The following example illustrates the procedure: if the ranking was as k = (1, 2, 2, 3)
and if the actual outcome happened to be (d, l), then the earning was either 6 or 3, each
with probability 1/2.

11To aid subjects in ranking outcomes, the software guided them through the process.
We implemented a step-wise procedure which asked the subject to assign ranks incremen-
tally from the most likely to the least likely (allowing for possible indifference). In each
game the very first rank had to be 1, i.e., “the most likely.” Then, for the second rank, the
subject could choose between expressing indifference by assigning 1 again or by assigning
2, i.e., “less likely.” The same for possible third and fourth ranks.
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The 11 2×2 games are listed below. The games were not presented in this
logical order and row/column orderings were also varied so that the equilibria
did not always fall on the main (ul-dr) diagonal. The game presentation
ordering also differed across the four Prediction sessions; see Appendix A.1.

PD-S PD-P PD-A
6 , 6 2 , 7 5 , 5 1 , 9 5 , 6 2 , 9
7 , 2 4 , 4 9 , 1 2 , 2 7 , 1 3 , 2

SH-S SH-P SH-A
6 , 6 2 , 5 7 , 7 0 , 3 7 , 6 1 , 5
5 , 2 4 , 4 3 , 0 4 , 4 6 , 2 3 , 4

CO-S CO-A1 CO-A2
6 , 6 1 , 1 7 , 3 1 , 1 3 , 7 3 , 3
1 , 1 6 , 6 1 , 1 4 , 4 2 , 2 6 , 4

SC-S SC-D
6 , 2 2 , 6 8 , 4 1 , 5
2 , 6 6 , 2 1 , 5 8 , 4

We elicited predictions for four types of games: three prisoner’s dilemma
(PD) games, three stag-hunt (SH) games, three coordination (CO) games
and two strictly competitive games (SC). The PD and SH games included
one symmetric version (S), one version with high off-diagonal (“temptation”)
payments (P), and one asymmetric version (A). We included one symmetric
and two asymmetric versions of the coordination games. Finally, the SC
games had one symmetric (S) and one asymmetric version with higher off-
diagonal payments (D).

The games were chosen with the goal of generating enough variation to be
able to test the hypotheses outlined in the preceding section. We conjectured
that correlated beliefs are best identified in games that allow for two distinct
and mutually exclusive conjectures about how the game would be played.
Conjectures based on pure strategy Nash equilibria (PNE) were natural can-
didates to consider. For example, in the stag-hunt game the conjectures could
very likely correspond to the two PNE’s that are on the diagonal of the stage
game. When both equilibria were reasonable, P would face a dilemma as to
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how many of the players would choose according to one or the other equilib-
rium.12 This dilemma would potentially be difficult to deal with when both
the PNE’s were about equally compelling, thereby leading P to assign the
highest ranks to the two PNE outcomes. This, by definition 3, would lead
to diagonally correlated rankings. In our experimental games we varied the
monetary payoffs in ways that at times magnified and at times minimized or
entirely eliminated the multiple strong conjectures dilemma.

In addition to eliciting rankings, we also sought to gauge the subjects’
level of confidence in their stated rankings. To get some information in a
simple and nonintrusive way that meshes well with the preceding ranking
task, we asked the subjects to guess how many of the 12 pairs from the
Behavior session played the action profile that they predicted was the most
likely outcome. To see why this information is useful, notice that a correlated
ranking in which the most likely outcome is expected to have been played by 3
or 4 pairs indicate some amount of “indifference” between the four outcomes.
For similar reasons a prediction that 11 or 12 pairs played the most likely
outcome indicates the subject is largely indifferent between the remaining
three outcomes. In each game this guessing task immediately followed the
ranking task. We incentivized guessing by paying 5 experimental currency
units for a correct response.13

The Behavior session began with an experimenter reading the instruc-
tions aloud (see Appendix B) while subjects could follow along on their own
hardcopy. Once these were finished, subjects completed four unpaid practice
rounds to became familiar with the computer interface and to verify their
understanding of the experimental procedures. Each practice round involved
control questions that had to be completed correctly before the experiment
was allowed to continue. In the Prediction sessions it was important that
everyone properly understood the decision problem faced by the participants
in the Behavior part of the experiment. We therefore began each session
with the same instructions and the same practice rounds as in the Behavior
part.14 This was followed by the instructions on ranking outcomes. Pre-

12Consider a 2×2 game in which both players get 10 if they choose (u, l), 1 if they choose
(d, r) and 0 otherwise. This game has two strict PNE’s but one of them (d, r) is clearly
unreasonable. There is little doubt about how the players would choose and what the
observers would predict.

13To avoid incentives for hedging we only allowed subjects to make a guess for the
outcome(s) that they ranked as the most likely.

14For authenticity purposes the instructions for the Prediction sessions included pho-
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diction subjects also completed three practice rounds with control questions
involving the ranking task.

In addition to the sessions just described, we ran control sessions to rule
out the possibility that any correlation in the rankings is driven by miscon-
ceptions regarding the ranking or the matching procedure. The difference
from the main sessions was in the way the games’ outcomes were generated.
Similar to the main experiment, the control part had also a single Behavior
session and four Prediction sessions. The Behavior session differed from the
main experiment in that it involved only 9 games (instead of 12 games) and
these games were not played by human players. Instead, draws from two
bingo cages determined the games’ outcomes.15 One bingo cage was used to
make the draws for the row player and another the draws for the column
player. Each bingo cage had 12 balls of one of two colors, such that each
color corresponded to a different action. For each game, a ball was drawn
from each of the two bingo cages. The pair was translated into an action
pair and the outcome of play was recorded. The next drawing was then
made with replacement. The number of “Up” and “Down” balls in the row
bingo cage and the number of “Left” and “Right” balls in the column bingo
cage corresponded to the marginal frequencies of play obtained for different
games in the original (human) Behavior session of the main experiment.16

The control Prediction sessions involved 46 subjects each ranking out-
comes for a sequence of 12 games, which is a sequence of the same length as
in the main part of the experiment. Nine games corresponded to the 9 games
used in the control Behavior session (played by the bingo cages) and 3 games
were selected from the original Behavior session involving human partici-
pants.17 We ran two sessions with the block of 9 control (bingo cage) games
first, followed by the block of 3 original (human player) games; another two
sessions were run with the reverse ordering. Two of the four control sessions

tographs taken during the Behavior session, which included photos of the public ex-post
verification of the choice implementation and matching procedure.

15Two human participants were recruited to observe the bingo cage drawings. They
were paid the sum of games’ payoffs as determined by one randomly chosen pair of bingo
balls for each game. This procedure provided a natural justification for the inclusion of
the games’ payoffs in their presentation in some of the prediction sessions.

16Two pairs of games produced identical frequencies. Instead of doubling up, we only
used 9 instead of 11 games.

17We wanted each game chosen from the human behavior session to represent a different
strategic setting (PD, SH, SC). From each category we also chose a game with the highest
frequency of correlated rankings: PD-S, SH-P and SC-D.
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(one in each order) displayed the game payoffs in the bingo cage prediction
games even though this information is irrelevant for the ranking task. In the
other two control sessions the payoffs were not visible to the predicting sub-
jects when they made predictions for the bingo cage games. This is to address
a possible concern that the size and relative standing of payoffs in individual
cells could be nudging subjects toward some simple ranking heuristic, such
as one based on equity and/or efficiency properties of the payoffs. It turns
out, however, that the control session predictions were not sensitive to either
the presentation ordering or the display of the game payoffs.

All 125 participants were undergraduate students with a variety of aca-
demic backgrounds at Purdue University, recruited from a database of about
3000 subjects using ORSEE (Greiner, 2015). The software was programmed
in Visual Basic. The Behavior session lasted approximately 30 minutes; the
Prediction session lasted approximately 50 minutes. At the end of each ses-
sion subjects were paid privately in cash, one USD for every 4 experimental
currency units, plus a 5 USD show-up payment. Subjects earned on average
21 USD in the Behavior session and 17 USD in the Prediction sessions.

4 Results

This section is divided into four parts. First, we give a brief overview of
the Behavior part (stage 1 game outcomes) of the experiment. The second
subsection presents the main analysis of the outcome rankings for the pre-
dictors. We construct an empirical model and formally test whether the
underlying beliefs are more likely to be correlated or independent. Third,
results are contrasted with the data from the control sessions. And lastly, we
draw additional observations regarding the systematic variation in correlated
rankings between games.

4.1 Behavior

We begin with an overview of the Behavior session. The second column of
Table 1 shows the full distribution of play for each of the eleven games.

In the prisoner’s dilemma and stag hunt games the behavior is consistent
with what is typically reported in the literature. The cooperation rate in the
PD games is 54% in the S version and declines as the defection incentives
get stronger (38% in P) or payments become more asymmetric (33% in A
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Table 1: Descriptive statistics for main sessions

Games Payoffs Beh. pt. Pred. pt.

no. of pairs mean ranks mode 2nd & 3rd most frq.

PD-S
6,6 2,7

7,2 4,4

3 3

4 2

1.7 2.5

2.5 1.9

1 3
3 2
Cor (11)

3 2
2 1

Ind (8)

1 2
2 3
Ind (6)

PD-P
5,5 1,9

9,1 2,2

2 2

3 5

1.7 2.1

2.2 2.1

1 2
2 3
Ind (13)

3 2
2 1

Ind (6)

2 3
3 1
Cor (6)

PD-A
5,6 2,9

7,1 3,2

1 2

4 5

2.1 2.2

2.7 2.2

1 2
3 4
Ind (6)

3 2
2 1

Ind (4)

1 2
3 3
Ind (3)

SH-S
6,6 2,5

5,2 4,4

6 4

2 0

1.3 2.7

2.8 2.0

1 3
3 2
Cor (21)

1 2
2 3

Ind (7)

1 4
3 2
Cor (4)

SH-P
7,7 0,3

3,0 4,4

9 0

2 1

1.2 2.9

2.8 2.0

1 3
3 2
Cor (23)

1 3
4 2

Cor (7)

1 4
3 2
Cor (4)

SH-A
7,6 1,5

6,2 3,4

9 2

0 1

1.4 2.9

2.8 2.1

1 4
3 2
Cor (10)

1 3
3 2

Cor (6)

1 4
3 2
Cir (6)

CO-S
6,6 1,1

1,1 6,6

4 5

1 2

1.2 1.8

1.8 1.2

1 2
2 1
Cor (33)

1 1
1 1

Ind (8)

2 1
1 2
Cor (4)

CO-A1
7,3 1,1

1,1 4,4

0 4

3 5

1.8 1.6

2.8 2.2

1 3
3 2
Cor (9)

2 3
3 1

Cor (8)

1 2
2 1
Cor (6)

CO-A2
6,4 2,2

3,3 3,7

5 6

1 0

1.8 2.8

2.7 1.8

2 4
3 1
Cor (11)

1 4
3 2

Cor (9)

1 2
2 1
Cor (3)

CS-S
6,2 2,6

2,6 6,2

1 4

1 6

1.3 1.6

1.7 1.8

1 1
1 1
Ind (22)

1 1
2 2

Ind (7)

1 2
2 1
Cor (5)

CS-D
8,4 1,5

1,5 8,4

3 6

3 0

1.3 1.9

2.0 1.3

1 2
2 1
Cor (23)

1 1
1 1

Ind (9)

2 1
1 2
Cor (4)

Note: below each of the three most frequent rankings we report whether the ranking

can be classified as correlated (Cor), independent (Ind), or circular (Cir); The

numbers of subjects reporting these exact rankings (out of 53) are shown in parentheses.
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version). In SH games we see consistently high rates of “stagish” behavior
(75% in S, 83% in P, and 83% in A) even when this equilibrium is not risk
dominant. In the coordination games the more equitable equilibrium in the
asymmetric versions is able to attract a higher proportion of play than the
less equitable one (71% in both A1 and A2). Overall, we do not see any
anomalies or abnormal patterns.

4.2 Predictions: human predictions

This subsection presents our main results regarding the extent of correlation
in the ranking data.18 The four right columns of Table 1 show the mean ranks
for each of the games’ outcomes, and the three most frequently observed
rankings across all predictors. Predictors believe that the (u, l) cooperative
outcome is on average most likely in all three prisoner’s dilemma games, even
though it was not played frequently. Predictions were more accurate for the
stag hunt games, where the Pareto dominant equilibrium was played most
frequently. For those games, as well as the other coordination games, the
raw data indicate pronounced high rankings of predicted play of equilibrium
outcomes on the diagonal.

4.2.1 Correlated rankings

We begin with the findings regarding the degree of correlation in the raw
rankings data. The left panel of Figure 3 shows the proportion of correlated
rankings for each of the eleven games. Each bar is divided into three parts.
The dark-color part refers to the proportion of diagonally correlated rankings
along the main (ul-dr) diagonal. The lighter color refers to the proportion of
diagonally correlated rankings along the off (ur-dl) diagonal. The uncolored
part refers to circularly correlated rankings. The right side of the figure
displays correlation rates for the control sessions, discussed below in Section
4.3.

The bar chart shows a substantial number of correlated rankings, and
most of these are diagonally correlated rankings. However, the details shown
in Table 2 indicate that the proportions vary considerably between games.
Predictors report diagonally correlated rankings most frequently in the stag
hunt (SH) and pure coordination (CO) games that have two pure strategy

18Appendix A.3 includes some diagnostic tests that demonstrate that rankings are sys-
tematic and not random.

21



Figure 3: Frequency of correlated rankings by game

Nash equilibria in monetary payoffs. Interestingly, correlated rankings are
less frequent in the prisoner’s dilemma games and least frequent in the sym-
metric version of the strictly competitive game. The Mann-Whitney tests
also show that proportions of diagonally correlated rankings vary signifi-
cantly within prisoner’s dilemma games and strictly competitive games.

4.2.2 Testing for correlation

This section reports formal tests for correlation in the reported rankings.
We formulate an error model on a rankings domain and use a likelihood
ratio test to determine whether a model that allows all types of rankings fits
significantly better than a restricted model which includes only independent
rankings. In line with the data in the left panel of Figure 3, we find a
strong support for correlated beliefs. In games where the estimated ranking
is correlated, correlated beliefs fit the data significantly better than any of
the independent rankings.

We assume a probabilistic error model on the ranking domain, which
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Table 2: Freq. of correlated rankings (main sessions, 53 predictors)

PD SH CO SC

S P A S P A S A1 A2 S D

Correlated

Main dg. 27 16 11 34 41 25 35 31 30 7 32

Off dg. 3 7 6 1 1 0 5 3 4 4 4

Circular 2 2 6 4 3 12 1 1 5 2 4

Corr. total 32 25 23 39 45 37 41 35 39 13 40

Indep. total 21 28 30 14 8 16 12 18 14 40 13

Mann-Whitney Tests within game types (main diagonal):

pS-P = 0.017 pS-P = 0.132 pS-A1 = 0.267 pS-D =

pS-A = 0.000 pS-A = 0.052 pS-A2 = 0.208 0.000

pP-A = 0.178 pP-A = 0.000 pA1-A2 = 0.812

Mann-Whitney Tests between game types (main dg., pooled data):

pPD-SH = 0.000 pSH-CO = 0.593 pCO-SC = 0.000

pPD-CO = 0.002 pSH-SC = 0.000

pPD-SC = 0.206

assigns probabilities to rankings in proportion to how much they deviate from
the intended ranking. Our notion of deviation from the intended ranking is a
distance between the two ranking vectors in the Euclidian space.19,20 Suppose

19Much of the literature uses a logistic error model which perturbs actions in proportion
to their implied relative payoffs, e.g., see Dal Bó and Fréchette (2011) for a recent approach
in a strategic setting. Goeree and Holt (2004) use the logistic error structure to perturb
players’ beliefs. For our case, the expected payoff from individual rankings depends on the
underlying belief distribution over the game’s outcomes. A subject’s payoff follows from
how accurately her belief distribution predicts the realized outcome, and this depends on
the behavior of two other players.

20For related approaches see, e.g., Costa-Gomes, Crawford Broseta (2001) for a simple
error structure in strategic setting, or, e.g., Ivanov, Levin and Peck (2009) for sequential
error assignment. In the sequential assignment model mistakes are made in assigning ranks
outcome wise. Furthermore, the mistakes are not correlated across outcomes. This kind of
independence assumption is not appropriate for our model. This is because, in our setup,
the set K is restricted. In particular, ranks like (2, 2, 2, 2) do not belong to our model.
Take the sequential assignment model. If the subject assigns ranks 1, 2 and 3 to the first
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the ranking that the subject intends to report is ρ = (ρ1, ρ2, ρ3, ρ4) ∈ K.
Given ρ, for every k ∈ K, define the Euclidean distance between ρ and k as:

d(k; ρ) =

√
4∑
i=1

(ρi − ki)2 . Let d∗ = max
ρ,k∈K

d(k; ρ). For a given ρ, ranking k is

chosen with probability

Pr(k | ρ, µ) =
exp

(
d∗−d(k;ρ)

µ

)
∑
k∈K

[
exp

(
d∗−d(k;ρ)

µ

)] ,
where µ > 0 as the precision parameter. The idea here is as follows. P , after
due introspection, chooses to report her true ranking ρ. In the process, how-
ever, her hands “tremble” and this causes her to mistakenly pick a ranking
k. Rankings, closer to ρ (in terms of the Euclidean distance) are chosen with
higher probability.

Let D be the set of rankings reported in the experiment. The likelihood
function for a given ρ and µ is

L(ρ, µ) =
∏
k∈D

Pr(k | ρ, µ)

We look for a pair ρ and µ that maximizes L(ρ, µ) in the domain ρ ∈ K
and µ ∈ [0, µ′], where µ′ is some large number. As K is finite and L(ρ, µ) is
continuous in µ, where µ belongs to a compact set, a maximum exists. We
test for correlation on the main diagonal using a likelihood ratio test. This
involves estimating the most likely ranking via maximum likelihood on the
unrestricted domain (including all rankings) and then again on a restricted
domain including only independent rankings.

Before presenting the results, there is one additional aspect of the data
that should be taken into consideration. Our method of eliciting rankings
gives only a coarse description of the underlying beliefs. Most of the time
the ranking provides reliable indication of whether beliefs are correlated or
independent. However, when the belief is relatively extreme so that it con-
centrates most of its mass on a single outcome, then the ordering of the

three outcomes, she has to assign rank of 3 or 4 to the fourth outcome. If P wants to rank
the fourth outcome differently she cannot. That is, suppose ρ4 = 2, P is either “forced”
to make a mistake and state the rank 3 or she has to go back and re-rank the first three
outcomes. Such introspection, we believe, does not capture the notion of simple random
mistakes.
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remaining outcomes is noisy due to the predictor’s near indifference. To
measure this near indifference recall that we rewarded subjects for accurate
guesses about the number of pairs (0 to 12) who played the outcome that
they designated as most likely. This gives us some idea about the shape
of the underlying distributions, including the belief weight placed on lower-
likelihood outcomes. In the rest of this section we exclude rankings with the
most extreme beliefs (guesses of 12 pairs or implausible beliefs of 3 or fewer
pairs on the most likely outcome) from the analysis.21

Table 3 presents the estimation results. Overall, in 9 of 11 games we find
a correlated ranking maximizing the likelihood function. In 8 of those games
the correlation is on the main diagonal. In the PD-A game the most likely
ranking has circular correlation. For 8 of 11 games the best fitting ranking
corresponds to the modal (most common) ranking (cf. Table 1, and in all
these cases the LR test is highly significant. We can convincingly reject
the single conjecture hypothesis H-s. We have further hypothesized that
correlation on the main diagonal should be more easily observed in games
with two pure strategy Nash equilibria than in other games. The reason is
that in these games the two PNE give the predicting subjects two natural
conjectures about how the game is likely to be played. The SH and CO games
have two PNE (on the main diagonal – ul and dr), the PD games we have
one PNE (dr) and the SC games have no PNE. We should therefore observe
fewer rankings that are correlated on the main diagonal in PD and SC games
than in SH and CO games. This is indeed the exact pattern observed in the
data. The Mann-Whitney tests in the bottom three rows of Table 2 provide
additional statistical support.22

21This excludes a total of 139 out of 583 predictions (24%), about two-thirds of which
represent highly confident predictions indicating all 12 pairs selecting the most likely out-
come. The analysis was also conducted with the full sample and the results remain quali-
tatively unchanged, as shown in Appendix A.6.

22Taking a strict stance on the data (and that games are viewed in terms of their
monetary payoffs) we would have to reject H-m as the most likely ranking in PD-S is
correlated on the diagonal. However, it is questionable whether sufficiently many subjects
indeed view the PD-S game in terms of only its monetary payoffs. In Appendix A.5 we
show that a behavioral model which views PD games as versions of a coordination game
due to psychological or social preferences receives a substantial support in the data.

25



Table 3: ML estimation of best-fitting ranking

PD games SH games

S P A S P A

Rnk 1 3 1 2 1 2 1 3 1 3 1 4

3 2 2 3 4 3 3 2 3 2 3 2

µ 1.079 1.171 1.75 0.716 0.596 1.001

Obs. 41 42 46 35 30 39

− logL 163.3 172.4 190.8 126.2 94.6 146.4

− logL̃ 172.4 172.4 193.6 142.4 116.9 160.5

pLR 0.000 1 0.018 0.000 0.000 0.000

Cor Ind Cir Cor Cor Cor

CO games SC games

S A1 A2 S D

Rnk 1 2 1 3 1 4 1 1 1 2

2 1 4 2 3 2 1 1 2 1

µ 0.415 1.122 1.076 0.946 0.537

Obs. 36 49 51 36 39

− logL 88.8 190.8 196.9 148.8 127.2

− logL̃ 120.7 198.3 215.4 148.8 151

pLR 0.000 0.000 0.000 1 0.000

Cor Cor Cor Ind Cor

Note: L̃ indicates the log-likelihood of the estimation restricted to independent rankings;

pLR refers to the likelihood ratio test p-value. Cor/Cir/Ind indicates whether the

estimated ranking is diagonally correlated, circularly correlated or independent.

4.3 Predictions: bingo cage control

The analysis of the previous subsection raises an important question. Are we
sure that our subjects properly understand the implications of independence
of play for the likelihood of outcomes? The correlation we see in the ranking
data may originate on a more fundamental level – perhaps it has to do
with some misconception regarding the matching of subjects in the Behavior
part; or, it could be that the presentation of payoffs nudged subjects in the
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direction of some ranking heuristic. Although the method is simple, it is
also possible that some subjects misunderstood the outcome of the ranking
procedure.

In light of our stark results these concerns gain significance. To address
them we ran several control sessions described in the experimental design
section. The key difference between the main experiment and the control
sessions was the nine games that subjects predicted with outcomes deter-
mined by random draws from two bingo cages (one for the row and a second
for the column “player”) rather than by human players. Subjects were in-
formed about the chances of drawing each action. In this setting it is not
possible to hold multiple conjectures. Hence, our theoretical argument for
the existence of correlated beliefs does not apply. However, a much simpler
and myopic explanation having to do with some basic misconceptions could
generate such beliefs.

The control sessions provide a between-subjects comparison of the fre-
quency of correlated rankings in the games that were played by human play-
ers and the same games that were played by bingo cages. Furthermore, each
control session included predictions for three games from the main experi-
ment that were played by human players. This allows for a within-subject
comparison for these three games. Table 4 and the right panel of Figure 3
summarize the results.23

The results paint a clear picture. For all 9 games, the frequency of cor-
related rankings is at least five times greater for the main human players
data than for the bingo cage control data. The p-values shown in Table 4
are (Fisher’s) exact tests and differences are all highly significant. No more
than 11 percent of the bingo cage control rankings indicate correlated beliefs
in any game. Furthermore, in 72-85% of instances subjects report rankings
that match the belief implied by the induced marginals (see Table 9 in the
Appendix A.2); and, of course, this belief is independent for all games.

Predictions for the three games in the control sessions that were played
by human participants are sharply different. Here we cannot reject the hy-
pothesis that any of the three games is the same as its counterpart in the
main experiment in terms of the frequencies of correlated rankings (p-values
of 0.73, 0.82 and 0.61 in Table 4). Thus, the same treatment difference is

23Further tables with descriptive statistics can be found in the “Additional tables: con-
trol sessions” Section A.2 of the Appendix. No significant differences exist in the ranking
distributions between individual sessions or between sessions with shown vs. hidden pay-
offs (see Table 8). Therefore, we pool the data across all four control sessions.
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Table 4: Percentage of correlated rankings (main vs. control)

PD SH CO SC

S P A S P A1 A2 S D

Corr.: all types

Main 60 47 43 74 85 77 66 25 75

Control

B-cage
(p-val.)

9
(0.00)

9
(0.00)

7
(0.00)

9
(0.00)

7
(0.00)

11
(0.00)

11
(0.00)

4
(0.00)

9
(0.00)

Human
(p-val.)

65
(0.73)

89
(0.82)

70
(0.61)

Corr.: the main dg.

Main 51 30 21 64 77 58 57 13 60

Control

B-cage 4 0 7 2 4 4 4 0 2

Human 52 85 63

Note: All percentages were calculated using the full sample of observations.

n = 53 for the main experiment and n = 46 for the control sessions.

observed for within-subjects variation as with between-subjects variation.
The control sessions provide clear evidence that subjects understand how

to rank outcomes properly, i.e., in line with laws of probability, in this sim-
pler setting where the strategic dimension of the player interaction has been
removed. As soon as the predicting subjects face games played by human
participants we observe a large proportion of correlated rankings. This is
consistent with the idea that correlated beliefs arise from balancing of the
multiple conjectures regarding the strategic behavior of other players.

4.4 Additional observations

In this section we return to tables 1 and 3 and make further observations on
some patterns of systematic variation in correlated rankings between games.
Consider first the PD games. In all three cases the cooperative outcome (ul) is
ranked as the most likely outcome. This is a rather strong indicator that our
subjects did not view the PD games entirely in terms of their own monetary
payoffs. Although for PD-P and PD-A the unique Nash equilibrium based on
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own monetary payoffs is the most frequent outcome in the Behavior session
(Table 1), the most frequently reported ranking assigns it the lowest rank.
Furthermore, an interesting observation can be made by comparing PD-S
and PD-P. The estimated rankings in these two games are quite similar.
The difference is that in the PD-S the ranking is correlated and in PD-P
it is not. It might be that in these games the concern for efficiency and
equity dominates the individual monetary incentives. Interestingly, out of
all subjects who ranked at least one of the outcomes on the main diagonal ul
or dr as the most likely (48 in PD-S and 47 in PD-P), a significant number
of them indicated this for the PNE (dr) – 20 (42%) in PD-S and 21 (45%)
in PD-P.

Another interesting comparison is between SC-S and SC-D. The absence
of correlation and the high frequency of the (indifference) ranking (1,1,1,1)
in SC-S is exactly what we would expect in that game. However, rankings in
SC-D exhibit considerable correlation on the main diagonal. The estimated
ranking matches that for CO-S. In SC-D the outcomes on the main diagonal
are efficient and the deviation gain for the column player is quite weak. It is
quite plausible that some predicting subjects view this game as a coordination
game and rank similarly to CO-S.

The overall picture seems to support the idea that monetary and psycho-
logical incentives act in tandem and provide subjects with multiple conjec-
tures that correlate beliefs. Assuredly, correlated rankings are most common
in games, such as SH-P or CO-S, where the incentives reinforce one another.24

Before closing this subsection let us make two additional observations.
The first concerns the difference between symmetric and asymmetric games.
The symmetric games produce smaller variation in the number of unique
rankings as well as a higher concentration on a few particular rankings than
asymmetric games. In addition, Table 2 shows that for the PD and SH games
the correlation on the main diagonal is significantly higher in the symmetric
than asymmetric games. This is consistent with an interpretation that in
asymmetric games tracing the payoffs and evaluating the incentives requires
more attention and cognitive effort. The estimated rankings, however, do
not paint such a clear picture. Correlated rankings are common in all of the
asymmetric games PD-A, SH-A, CO-A1 and CO-A2. Moreover, independent

24In Appendix A.5 we explore further the interaction between the perception of payoffs
and the belief correlation. We define several behavioral types and estimate their relative
likelihood. The results confirm the claims just made.
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estimated rankings exist for two symmetric games – PD-P and SC-S. Note,
however, that the estimated µ is generally larger for the asymmetric games.
This implies more noise in those rankings (i.e., the probability is more evenly
distributed across rankings when µ is larger).

Our final observation concerns the nature of the “dilemma” between the
two outcomes on the main diagonal. In the -S and -P versions of the PD
and SH games the two outcomes are attractive for different reasons – Pareto
efficiency vs. incentives to deviate in the PD game and Pareto vs. risk
dominance in the SH game. Moreover, the -P version reduces the dilemma
relative to the -S version.25 This is in contrast with CO-S and SC-D where the
two outcomes on the main diagonal are identical and hence equally attractive.
Does the nature of the dilemma have any bearing on whether beliefs are
correlated or not? This does not seem to be the case. Firstly, Table 2 shows
fewer correlated rankings in PD-P relative to PD-S, but an opposite pattern
in the SH games. Secondly, both CO-S and SC-D record some of the highest
proportions of correlated rankings among all games. It seems there is no
clear connection between the nature of the dilemma and the type of ranking
in a given game.

5 Summary and Discussion

This experiment provides direct evidence on whether beliefs over strategic
behavior of others are independent or correlated. An intriguing possibil-
ity that beliefs might be correlated has been recently suggested by Bran-
denburger and Friedenberg (2008) and Costa-Gomes, Crawford and Iriberri
(2009). To get at this question directly we used simple 2×2 games presented
in normal form. One group of subjects played the games and another group
predicted the outcomes. To obtain a reliable measure of beliefs we elicited
likelihood rankings rather than direct probabilities over outcomes. Subjects
simply stated which outcomes they consider more likely than others. We
incentivized truthful reporting of likelihood rankings with a simple payment
scheme. In the majority of cases (8 of 11 games) we detect a high frequency
(between 50-80%) of diagonally correlated rankings. It should be noted that
this result is not driven by any of the demographic variables that we collected
in our post experimental questionnaire, e.g., gender, type of major, number

25Note that under risk neutrality, in the PD-P game neither equilibrium risk dominates
the other.
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of semesters completed.26 Our control sessions rule out possible misconcep-
tions regarding the proper understanding of the outcome ranking procedure,
the independence of play or the framing of the games.

The prevailing frequency of correlated rankings is inconsistent with a
model of other players’ behavior in which a single state (e.g., Nash equilib-
rium) generates signals (i.e., actions). It is consistent with a model in which
multiple conjectures are considered (e.g., multiple pure strategy Nash equi-
libria) and weighted against one another, resulting in a belief over game’s
outcomes that corresponds to a correlated equilibrium. The pure strategy
Nash equilibria might serve as conjectures that correlate beliefs, since we ob-
serve mostly diagonally correlated rankings in games with two pure strategy
Nash equilibria that lie on the main diagonal . Correlation in some prisoner’s
dilemma games and strictly competitive games is less frequent than in stag
hunt games and coordination games. This all lends support to the idea that
pure strategy Nash equilibria play an important role in correlating beliefs.

We find strong evidence that subjects tend to think of others as behaving
in a correlated manner. Interestingly, an emerging literature has considered
a seemingly opposite phenomenon called correlation neglect, i.e., Enke and
Zimmermann (2017) or Eyster and Weizsacker (2016). In these studies in-
dividuals are presented with correlated information and are made aware of
the source of correlation. Their decisions, however, are consistent with them
treating the information as independent. While these correlation neglect
studies suggest that information from others tends to be treated as inde-
pendent, our paper identifies conditions where beliefs about others behavior
tend to be correlated. This contrast suggests an interesting avenue for further
research.

Our experiment is only the first step in studying how subjects form beliefs
of others’ play. We subjected predictions to a stress test that strongly favored
the Nash model for making predictions. Our players interacted anonymously
and were matched independently. The predicting players reported beliefs
“as if” they thought the players had an access to a correlating device. We
have documented that these beliefs are quite common. But will these be-
liefs persist as subjects gain more experience? Is the correlation likely to
get stronger in larger or more complex games? Will beliefs still agree with
correlated equilibria in games like the hawk-dove game where one type of cor-
related equilibrium requires private signals? What are the implications for

26For regression results please see Appendix A.4.
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economically relevant scenarios, such as, entry games, public goods games,
or auctions? These are all open questions that we leave for future research.
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Appendix A

A.1 Game sequencing

Table 5: Game ordering between sessions

Beh. part Pred. part
Ses. 1 Ses. 2 Ses. 3 Ses. 4

1 PD-S PD-S SH-P CO-A2 SC-S
2 SC-S SC-S PD-A PD-P CO-A1
3 SH-P SH-P CO-A2 SC-A SH-S
4 CO-A2 CO-A2 SH-A SH-P PD-S
5 PD-P PD-P SC-A CO-S SH-A
6 CO-A1 CO-A1 CO-A1 PD-A CO-A2
7 SH-S SH-S PD-S SC-A PD-P
8 PD-A PD-A SH-S SH-A CO-S
9 CO-S CO-S SC-S PD-S SH-P
10 SH-A SH-A PD-P SH-S SC-A
11 SC-A SC-A CO-S CO-A1 PD-A

A.2 Additional tables: control sessions
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Table 6: Descr. stat. for control sessions (b-cage play prediction)

Games Drawn Pr.: hid. payoffs (26 obs.) Pr.: sh. payoffs (20 obs.)

pairs means mode means mode

PD-S 7 5

6 6,6 2,7

6 7,2 4,4

2 1

7 2

1 2.1

1 2

1 2

1 2

(24)

1.1 2.4

1.5 2.2

1 2

1 2

(12)

PD-P 5 7

4 5,5 1,9

8 9,1 2,2

1 1

6 4

3.7 2.7

2 1.1

4 3

2 1

(19)

3.4 2.8

1.9 1.2

4 3

2 1

(14)

PD-A 5 7

3 5,6 2,9

9 7,1 3,2

3 1

2 6

3.9 3

2 1

4 3

2 1

(23)

3.7 3

2.2 1.1

4 3

2 1

(13)

SH-S 8 4

10 6,6 2,5

2 5,2 4,4

7 2

2 1

1.1 2

2.8 3.8

1 2

3 4

(21)

1.4 2.1

3 3.7

1 2

3 4

(16)

SH-P 11 1

9 7,7 0,3

3 3,0 4,4

8 0

4 0

1.1 2.8

2.1 3.8

1 3

2 4

(20)

1 3.1

2.1 3.6

1 3

2 4

(14)

CO-A1 3 9

4 7,3 1,1

8 1,1 4,4

0 5

1 6

3.8 2

2.8 1.1

4 2

3 1

(19)

3.7 2.1

2.9 1

4 2

3 1

(16)

CO-A2 6 6

11 6,4 2,2

1 3,3 3,7

4 6

1 1

1 1

2 2.1

1 1

2 2

(24)

1.2 1.3

2.3 2.2

1 1

2 2

(14)

SC-S 2 10

5 6,2 2,6

7 2,6 6,2

0 1

2 9

3.9 2

2.9 1.1

4 2

3 1

(22)

3.7 2

3 1

4 2

3 1

(17)

SC-D 6 6

9 8,4 1,5

3 1,5 8,4

5 4

2 1

1 1

2.1 2.1

1 1

2 2

(24)

1.1 1.3

2.1 2.3

1 1

2 2

(22)
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Table 7: Descr. stat. for control sessions (human play prediction)

Games Pred. pt.: payoffs hid.
(obs.: 26)

Pred. pt.: payoffs sh.
(obs.: 20)

means mode means mode

PD-S

6,6 2,7

7,2 4,4

1.7 2.3

2.4 2

1 3

3 2
(9)

1.7 2.4

2.5 1.8

1 3

3 2
(7)

SH-P

7,7 0,3

3,0 4,4

1.2 2.8

2.8 1.8

1 3

3 2
(18)

1.4 2.8

1.9 1.8

1 3

3 2
(14)

SC-D

8,4 1,5

1,5 8,4

1.2 1.7

1.8 1.2

1 2

2 1
(15)

1.4 2

1.9 1.3

1 2

2 1
(10)

Table 8: Freq. of correlated rankings (control session)

B-cage prediction Human pr.
PD SH CO SC PD SH SC

S P A S P A1 A2 S D S P D

Payoffs hidden (n = 26)

ul-dg. 1 0 0 1 1 0 0 0 1 13 24 16
ur-dg. 1 0 0 0 0 0 0 0 0 4 1 0
Other 0 0 0 1 0 1 1 0 1 1 0 0
Payoffs shown (n = 20)

ul-dg. 1 0 3 0 1 2 2 0 0 11 15 13
ur-dg. 1 1 0 1 1 0 0 1 2 1 0 2
Other 0 3 0 1 0 2 2 1 0 0 1 1

A.3 Diagnostic tests

First we look at the extent of general “(dis)agreement,”27 among subjects on
how to rank each individual game.

It is possible to rank the four outcomes in 75 different ways. Table 10
shows information on (i) the number of unique rankings, (ii) the average

27By an agreement we mean two or more subjects reporting the same ranking.
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Table 9: Perc. of reported rankings matching the implied rankings

Gm. & impl. belief Impl. rnk. Hid. payoffs
(obs.: 26)

Sh. payoffs
(obs.: 20)

Comb.

PD-S .58 .42

.5 .29 .21

.5 .29 .21

1 2

1 2

92 60 78

PD-P .42 .58

.33 .14 .19

.67 .28 .39

4 3

2 1

73 70 72

PD-A .58 .42

.25 .15 .10

.75 .44 .31

3 4

1 2

88 65 78

SH-S .67 .33

.83 .56 .28

.17 .11 .06

1 2

3 4

81 80 81

SH-P .92 .08

.75 .69 .06

.25 .23 .02

1 3

2 4

77 70 74

CO-A1 .25 .75

.33 .08 .25

.67 .17 .50

4 2

3 1

73 80 76

CO-A2 .5 .5

.92 .04 .04

.08 .46 .46

2 2

1 1

92 70 82

SC-S .17 .83

.42 .07 .35

.58 .10 .49

4 2

3 1

85 85 85

SC-D .5 .5

.75 .38 .38

.25 .13 .13

1 1

2 2

92 75 85

frequency of the agreement across all single rankings, and (iii) the frequency
of the agreement for the three most commonly observed rankings in each
game. The number of unique rankings varies from 10 in the symmetric version
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Table 10: Frequency of equal rankings across games

Unique rnks. Size of the agr. 3 largest agr.
No. Mean (st. dev.) ord. by size

PD-S 17 3.11 (3.02) 11 8 6
PD-P 19 2.79 (3.1) 13 6 6
PD-A 27 1.96 (1.22) 6 4 3
SH-S 18 2.94 (4.77) 21 7 4
SH-P 12 4.41 (6.1) 23 7 4
SH-A 21 2.52 (2.27) 10 6 6
CO-S 10 5.3 (9.99) 33 8 4

CO-A1 20 2.65 (2.41) 9 8 6
CO-A2 28 1.89 (2.38) 11 9 3
SC-S 18 2.94 (5.03) 22 7 5
SC-D 12 3.53 (5.79) 23 9 4

Table 11: Distribution of ranking types across games

Rnk. types PD SH CO SC

n1, n2, n3, n4 S P A S P A S A1 A2 S D

1,1,1,1 14 7 32 15 16 34 2 14 37 14 7

1,1,2,0 16 12 7 23 25 6 1 18 2 1 2

1,2,1,0 14 21 7 10 5 4 0 8 2 0 1

1,3,0,0 2 2 2 1 2 4 0 2 0 0 0

2,1,1,0 2 5 3 2 1 0 2 2 8 1 4

2,2,0,0 5 5 2 2 4 5 40 9 4 15 30

3,1,0,0 0 0 0 0 0 0 0 0 0 0 0

4,0,0,0 0 1 0 0 0 0 8 0 0 22 9

pS-P = 0.35 pS-P = 0.723 pS-A1 = 0.000 pS-A =

pS-A = 0.008 pS-A = 0.000 pS-A2 = 0.000 0.002

pP-A = 0.000 pP-A = 0.000 pA1-A2 = 0.000

Note: nj represents the number of times j ∈ {1, 2, 3, 4} appears in the ranking;

p-values refer to pairwise chi-squared tests of distributions, e.g., in the last

column, pS−A refers to the test between S and D version of the SC game.

of the coordination game CO-S to 28 in the asymmetric version CO-A2. CO-
S leads the way with 33 subjects reporting the most frequent ranking, while
in PD-A no more than 6 predictors selected the same ranking. Noteworthy
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is the difference between symmetric and asymmetric games. In general, the
symmetric games (-S, -P and -D) produce distinctly smaller variation in the
number of unique rankings as well as a larger concentration on a few specific
rankings.

The distinction between independent and correlated rankings is meaning-
ful only if subjects ranked the games’ outcomes in a systematic (nonrandom)
way and according to their underlying beliefs. This calls for a basic test
of random behavior. Our experimental procedure allows for a test that is
based on the observed frequency of indifference in reported rankings (i.e.,
how many outcomes were ranked as equally likely). In the experiment, pre-
dictors started with the “most likely” rank (1) and assigned it to the out-
come of her choice; the next outcome could be ranked as “equally likely”
(i.e., also rank 1) or “less likely” (rank 2). And so on. For any given k,
with some abuse in notation, let ni represent the number of times the rank
i ∈ {1, 2, 3, 4} was assigned to one of the outcomes. Then, for a given ranking
k, the quadruple n = (n1, n2, n3, n4) represents a frequency distribution of
the ranks in k. For example the distribution n = (4, 0, 0, 0) would correspond
to a ranking reflecting complete indifference - all four outcomes receive the
same rank 1, i.e. k = (1, 1, 1, 1). Similarly, n = (1, 1, 1, 1) would correspond
to rankings without any indifference, i.e. those k’s for which ki 6= kj for all
i, j ∈ {1, 2, 3, 4). Further, n = (2, 2, 0, 0) would correspond to rankings where
two pairs would get the same rank, but the rank would differ across pairs,
e.g. k = (2, 1, 1, 2). Note that in our experiment each distribution n belongs
to the set: {(1, 1, 1, 1), (1, 1, 2, 0), (1, 2, 1, 0), (1, 3, 0, 0), (2, 1, 1, 0), (2, 2, 0, 0),
(3, 1, 0, 0), (4, 0, 0, 0)}. Table 11 lists each of the the eight elements of this
set and shows their distribution across the eleven games. Under the ran-
dom behavior hypothesis, each of the eight types should be observed with
equal probability (1/8). As an example take the ranking (4, 0, 0, 0). The first
ranked outcome receives the ranking of 1 with probability 1. The second
ranked outcome receives 1 with probability 1/2 (and 2 with probability 1/2).
The third ranked outcome receives 1 with probability 1/2× 1/2; finally the
fourth ranked outcome receives 1 with probability 1/2 × 1/2 × 1/2 = 1/8.
Using a Monte Carlo simulation test we can convincingly reject random be-
havior for all 11 games.28

28UnderH0 the test randomly assigned 53 observations to 8 bins and counted the number
of instances for which the resulting distribution was more extreme than the observed
distribution (i.e., corresponding to a column in Table 11. The p-value = 0.000 for all
games.
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Consistent with Table 10, Table 11 also indicates a difference in ranking
behavior between symmetric and asymmetric games. In symmetric games
the frequency distribution of n’s is more concentrated on a few types of
rankings while in asymmetric games it is more dispersed. The chi-squared
tests (reported in the bottom rows of Table 11 fail to reject equality of the
distributions of n’s for the -S and -P versions of the PD and the SH games.
Thus, there seems to be more agreement on how subjects play the symmetric
than asymmetric games.

The two strictly competitive games provide an interesting comparison.
The two games look quite similar in terms of the number of unique rankings
(as seen in Table 10) but are very different in terms of the kind of rankings
that they receive (as shown in Table 11). Recall, SC-D has two efficient out-
comes lying on the main diagonal while in SC-S all four outcomes are exactly
the same. It is most likely this difference in games’ payoffs that accounts for
the difference in behavior. The outcomes on the main diagonal in SC-D re-
ceive lower (“more likely”) ranks than the same outcomes in SC-S. This is
illustrated in the bottom two rows (and two right most columns) of Table 1.

The next question we ask is whether monetary payoffs played a signif-
icant role in ranking outcomes. One way to approach this question is to
check whether various types of incentives, such as the incentive to deviate or
the outcome’s equitable and efficiency properties, had any impact on which
outcome was ranked as the most likely. Table 12 presents a logistic model in
which the dependent variable takes a value of 1 if the outcome was ranked
as the most likely (i.e., received the rank of 1) and 0 otherwise. This is re-
gressed on several dummy variables: “No profitable deviation” takes a value
of 1 if, in a given game, the outcome was a pure strategy Nash equilibrium;
“Most equitable payoffs” takes a value of 1 if the game’s outcome minimized
the payoff difference between the two players; and “Efficient payoffs” takes a
value of 1 if the outcome maximized the sum of players’ payoffs.29

Results reveal that all three types of incentives had a significant impact
on the outcome being ranked as the most likely. Moreover, the estimated
coefficients are comparable in magnitude. This suggests that concerns for
equity and efficiency play a role in determining how subjects rank outcomes.

29The correlations between regressors are not very high: ρ(No dev., Equit.) = 0.275;
ρ(No dev., Effic.) = 0.147; ρ(Equit., Effic.) = 0.126.
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Table 12: Logit regression of the most likely outcome on incentives

Coeff Std. err. p-value
Constant −3.222 0.257 0.000
No profitable deviation 1.138 0.173 0.000
Most equitable payoffs 1.314 0.2 0.000
Efficient payoffs 1.623 0.28 0.000
No. obs. 2332
Log likelihood −1173.67

Note: Game fixed effects were included; errors were clustered by subject.

A.4 Demographics

In this section we examine whether there is a relationship between the propen-
sity to report a correlated ranking and some of the demographic variables
collected in the post-experiment questionnaire. We run a logistic regres-
sion in which the dependent variable on the left hand side is coded 1 if the
ranking was correlated and 0 otherwise. Among the regressors are a gender
dummy (female = 1), number of semesters completed, science dummy indi-
cates whether subject’s major belongs among natural sciences, and a non-US
dummy takes on value of 1 if subject’s country was outside of the US. We
have included game fixed effects and clustered the errors by subject.

The results are shown in Table 13. The first regression considers all types
of correlated rankings. In the regression (2) the dependent variable took on
value of 1 only if the rankings was correlated on the main diagonal. Finally,
regression (3) was identical to (2) except that all rankings corresponding to
extreme beliefs (with guesses of 12 or smaller than 4) were excluded. Quick
glance at the results reveals that none of the regressors had a significant
impact on the ranking behavior.30 It seems our results are not driven by any
particular demographic group that we are able to identify in our data.

30The science dummy is weakly significant in regression (1) but this is not robust as can
be seen from regressions (2) and (3).
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Table 13: Logit regression of the type of ranking on demographics

Dep. variable = 1 if reported ranking is correlated
(1) (2) (3)

Constant 0.465
(0.24)

∗ 0.286
(0.236)

0.047
(0.276)

Gender (F) 0.076
(0.165)

−0.034
(0.165)

0.007
(0.173)

Semester −0.036
(0.042)

−0.031
(0.042)

−0.002
(0.049)

Science major −0.306
(0.178)

∗ −0.177
(0.18)

−0.027
(0.186)

Non-US 0.109
(0.189)

0.067
(0.196)

0.008
(0.192)

No. obs. 561 510 388
Log likelihood −345.92 −325.36 −253.38

Note: Standard errors included in the parentheses.

A.5 Behavioral models

Figure 4 shows the frequency of correlated rankings across all 53 subjects in
the main human players prediction sessions. A majority of subjects report
correlated rankings in about 40-80% of games. About one-third of them
report correlated rankings less than 40% of the time. In this subsection we
define four behavioral types and estimate their relative likelihood in the data.

The predictor may perceive the stage one payoffs in terms of the monetary
payments or may incorporate concerns for efficiency and equity in the payoffs
(e.g., in the spirit of Charness and Rabin, 2002). Incorporating sufficiently
strong efficiency and equity considerations into the payoffs, all of our games
(except SC-S) could be considered coordination games with two pure strategy
NE on the main diagonal. For brevity, we refer to such social preferences as
psychological payoffs. Apart from this, we would like to distinguish between
individuals whose beliefs are based on a single conjecture versus multiple
conjectures. The former group believe in independent play. Our formulation,
thus, gives us four types. Type tMI considers only the monetary payments as
payoffs and predicts according to the pure strategy Nash equilibrium induced
by these payoffs. Type tMC takes into account only monetary payoffs and
predicts according to some correlated equilibrium. Similarly, for those who
take psychological payoffs into consideration we have the types tPI and tPC ,
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Figure 4: Frequency of correlation within subjects

respectively. Let T = {tMI , tMC , tPI , tPC} and let t denote an element of T .
Γ denotes the set of our eleven games and g denotes an element of Γ. Let N
be the set of predictors.

Our objective is to estimate the proportion of the four types in our data.
Let qt be the proportion of type t and q = (qMI , qMC , qPI , qPC). For any
game g in Γ, and type t in T , let Ptg be the set of consistent rankings, i.e., a
ranking that t may provide.

Table 14 summarizes the relevant parts of elements in our predicted sets
Ptg, for all four types.

Let Pr(k | ρ, µ) be as defined earlier. Fix µ. For a given predictor i ∈ N ,
in game g ∈ Γ, let ρ(i, t, g, µ) in Ptg be the ranking she wishes to report if
she were to be of type t. Given i’s stated ranking kig in game g, let:

ρ(i, t, g, µ) ∈ max
ρ∈Pt,g

Pr(kig | ρ, µ).

Now define the likelihood function:

L(ρ, q, µ) =
∏
i∈N

∏
t∈T
qt
∏
g∈Γ

Pr(ki,g |ρ(i, t, g, µ), µ).
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Table 14: Predicted highest ranked outcome for behavioral types

Monetary

Correlated

Monetary

Independent

Psychological

Correlated

Psychological

Independent

PD (d , r) (d , r)

(u, l)

and/or

(d , r)

(u, l)

or

(d , r)

SH & CO

(u, l)

and/or

(d , r)

(u, l)

or

(d , r)

(u, l)

and/or

(d , r)

(u, l)

or

(d , r)

SC-S - - - -

SC-D - -

(u, l)

and/or

(d , r)

(u, l)

or

(d , r)

We then estimate the proportions qt’s as a solution to the following optimiza-
tion program:

max
ρ,q,µ

L(ρ, q, µ) s.t. Σ
t∈T
qt = 1.

Table 15 summarizes the results. The SC-S game is excluded as the pre-
dictions for the four types coincide for this game. SC-D provides specific
prediction only for P types but not for M types. Because of this, we exclude
this game from estimates shown in (1) and (2).

The first column of Table 15 shows that the PC type whose payoffs incor-
porate a psychological transformations of monetary payoffs and who forms
conjectures around PNE’s that leads to correlated beliefs commands strong
support in the data. A large majority, about 77% of the population, is esti-
mated to be consistent with this behavioral type. The type (PI ) who does
not think in terms of such conjectures does receive a non negligible weight
of 15%. Restricted estimates in columns (2) and (3) perform two robust-
ness exercises where we only consider types with the same payoffs: monetary
in (2) and psychological in (3). The results are qualitatively similar and if
anything put even more weight on the type C that lead to correlated beliefs.
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Table 15: ML estimation of behavioral types

(1) (2) (3)

qMC 0.074
(0.049)

0.889∗∗∗
(0.121)

-

qMI 0.000
(0.027)

0.111∗
(0.121)

-

qPC 0.773∗∗∗
(0.075)

- 0.845∗∗∗
(0.196)

qPI 0.153∗
(0.069)

- 0.155∗∗∗
(0.196)

µ 0.483∗∗∗
(0.018)

0.61∗∗∗
(0.027)

0.491∗∗∗
(0.02)

−log L 1036.1 1286.5 1049.1

Note: (1) and (2) exclude data from the SC games (both are uninformative);

(3) excludes data from game SC-S. Standard errors are in the parenthesis.

Rankings with extreme frequency guesses (<4 or >11) are excluded;

corresponding table with the full sample can be found in Appendix A.6.

A.6 Full sample estimates
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Table 16: ML estimation and LR tests - full sample

PD games SH games

S P A S P A

Rnk 1 3 1 2 1 2 1 3 1 3 1 4

3 2 2 3 4 3 3 2 3 2 3 2

µ 0.892 1.064 1.971 0.557 0.489 0.877

Obs. 53 53 53 53 53 53

− logL 203.6 214.6 222.6 160 140.3 189.2

− logL̃ 220.5 214.6 224.7 205.1 196.3 209.4

pLR 0.000 1 0.04 0.000 0.000 0.000

Cor Ind Cir Cor Cor Cor

CO games SC games

S A1 A2 S D

Rnk 1 2 1 3 1 4 1 1 1 2

2 1 3 2 3 2 1 1 2 1

µ 0.4 0.918 1.083 0.799 0.534

Obs. 53 53 53 53 53

− logL 124.1 205.2 204.5 188.2 167.5

− logL̃ 175.6 212.9 223.9 188.2 196.3

pLR 0.000 0.000 0.000 1 0.000

Cor Cor Cor Ind Cor

Note: L̃ indicates the log-likelihood the restricted estimation; pLR refers to

the likelihood ratio test. Cor/Cir/Ind indicates whether the estimated

ranking is diagonally correlated, circularly correlated or independent.
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Table 17: ML estimation of behavioral types - full sample

(1) (2) (3)

qMC 0.070∗
(0.042)

0.922∗∗∗
(0.042)

-

qMI 0.000
(0.012)

0.078∗
(0.042)

-

qPC 0.836∗∗∗
(0.053)

- 0.903∗∗∗
(0.039)

qPI 0.094∗
(0.044)

- 0.097∗∗∗
(0.039)

µ 0.47∗∗∗
(0.015)

0.587∗∗∗
(0.02)

0.476∗∗∗
(0.015)

−log L 1306.7 1628.5 1317.5

Note: (1) and (2) exclude data from the SC games (both are uninformative);

(3) excludes data from game SC-S. Standard errors are in the parenthesis.
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