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Abstract

Divided enrollment systems cause school assignments to be unfair and wasteful. It-
erative version of the student-optimal stable mechanism (I-SOSM), proposed by Man-
junath and Turhan (2016), achieves individually rational and fair assignments in such
partitioned school choice markets for any number of iteration. It also reaches a non-
wasteful matching when iterated sufficiently many times. This paper examines the
effects of partition structure of schools on students’ welfare and incentives they face
under I-SOSM. I find that when school partition gets coarser students’ welfare weakly
increases under I-SOSM for any number of iteration. I also show that under coarser
school partitions I-SOSM becomes weakly less manipulable for students according to
a criteria defined by Pathak and Sönmez (2013). These results suggest that when full
integration is not possible keeping school partition as coarse as possible benefits stu-
dents with respect to their welfare and incentives they face if stability is a concern for
policymakers.
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1 Introduction

In almost every city schools are broken into groups that compete for the same crop of school-
aged children. Public schools, charter schools, private schools and voucher programs are main
school groups in USA which are antagonistic towards one another. Most families participate
in admissions processes in multiple school groups. In one of their recent reports1 the Center
on Reinventing Public Education (CRPE) points the issue of parallel assignments as follows:

“Families in many districts can choose from a variety of charter and district
schools for their children. But to make these choices, parents often must fill
out multiple application forms and, navigate schools that may have different re-
quirements, deadlines, and selection preferences such as sibling attendance or
proximity to the school. Once parents complete the applications and schools make
offers, some families receive multiple offers and often hold on to them until the
last minute, while other families receive a few or no offers, remaining on waitlists
well into the fall. Not only this is difficult for families, it favors families with the
time and knowledge to navigate its inherent complexities.”

In New Orleans, for instance, there are two different large bodies: the Orleans Parish School
Board (PSB) and the Recovery School District (RSD). There have been attempts to unify
these two institution in order to have common enrollment process known as “OneApp”. The
OneApp process began by requiring only the district-run and charter schools overrun by
the RSD. Schools operated by the PSB including selective admissions schools, local char-
ter schools and schools accepting vouchers for eligible students participate in the OneApp
“voluntarily”. Now, OneApp accommodates 89% of the schools but not all of them.

In many other cities full integration of school systems is not possible, as well. The process
of matching students to different groups of schools are independent of one another. It is easy
to see that this leads to inefficiencies: seats in one school system are “wasted ” on students
who choose to go to one of the other systems. Consequently, at the end, many children
might be left unmatched or matched to schools that they find worse than others with empty
seats. Dreilinger (2013) reports that many students simply do not show up on the first day
of classes in New Orleans because they receive multiple acceptances from different schools.
In Milwaukee, many students are left to participate in what is called “open enrollment” after
the main round of admissions because of the same reason. This is an uncoordinated and
chaotic process where parents apply to individual schools in search of a seat for their child.

1See “Coordinating Enrollment Across School Sectors: An Overview of Common Enrollment Systems”
(2014) by the Center on Reinventing Public Education.
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This way of matching students to schools is inefficient and leads to violations of priorities
that students have at schools.

When full integration is not possible, Manjunath and Turhan (2016) propose a way for
groups of schools to match and re-match. Each school group uses the student-optimal stable
mechanism (SOSM). Once various groups of schools separately match students using the
SOSM, the problem of wasted seats persists. The iterative process described to solve this
problem is as follows: Each student submits to each group of schools her preferences over
those schools. Each group separately apply the SOSM restricted to that group of schools.
A student who is matched to a school in more than one group accepts his most preferred
among them and turns down the rest. This is the initial match. There may be wasted seats
at this point since some of the matches are turned down. Each group of school computes a
re-match in the following way:

1. If a student accepted a seat offered by this group, his preferences over this group are
“truncated” at the school which was offered to him. If a student turns down the seat
offered by this group, his preferences over this group are truncated above the school
that was offered to him.

2. The group “re-matches” using the SOSM restricted to this group for the truncated
preferences.

Again, every student who is matched to a school by more than one group accepts his most
preferred among them and turns down the rest. This is the “re-match”. The re-match may
still have wasted seats so the re-matching process may be repeated. If it is repeated enough
times, the resulting matching will be stable, i.e., individually rational, non-wasteful, and
eliminates justified envy.2 While iterating may be costly, as it involves asking inputs from
students, Manjunath and Turhan (2016) show, both analytically and via simulations, that
there are significant gains from the first few iterations.

This paper studies effects of schools’ partition structure on students’ welfare and incen-
tives they face under the rule described above. I show that for any given preference profile
the above procedure yields a (weakly) Pareto superior outcome under a coarser school parti-
tion for any number of iteration (Theorem 3). When each school group runs the SOSM only
once the procedure is strategy proof (Theorem 2) so the Pareto comparison (Theorem 1) is
robust. If each school iterates the SOSM more than once strategy-proofness is lost (Example
1). When iterated sufficiently many times the I-SOSM rule gives a stable matching. I com-
pare the manipulability of two such stable I-SOSM rules, one is under finer partition than

2See Balinski & Sönmez (1999) for the decomposition of stability into individual rationality, fairness and
non-wastefulness.
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another, and find that I-SOSM under a finer school partition is weakly more manipulable
for every student than the one under a coarser school partition (Theorem 4). Lastly, I find
that dropping strategies are exhaustive under I-SOSM, for any number of iteration, in the
sense that for any manipulation strategy there exists a dropping strategy which achieves it
(Theorem 5).

1.1 Related Literature

This paper is related with Ekmekci and Yenmez (2015). They provide a new framework to
study the incentives of a school to join a clearinghouse and show that each school prefers
to remain out of the centralized system when others join and either version of the deferred
acceptance algorithm is used by the central clearinghouse. Their analysis provides an ex-
planation of why some charter schools have evaded the clearinghouse. They propose two
schemes that can be used by policymakers in order to overcome this issue. Theirs is an
equilibrium analysis where each school can choose either to participate in or to evade from
the centralized clearinghouse.

Another related work is Doğan and Yenmez (2017). They study divided and unified
enrollment systems for student assignment when there are different types of schools. They
show that the unified enrollment system is better for students than the divided enrollment
system in the context of student assignment in Chicago to selective and nonselective schools.
It is important to note that the mechanism they study in the 2-stage divided system is
different than the one I consider.

This work is also closely related to Pathak and Sönmez (2013) and Chen, Egesdal, Pycia
and Yenmez (2016). I use manipulability comparison criterion, which is introduced in Pathak
and Sönmez (2013), in order to compare manipulability of two I-SOSMs where one is under
coarser school partition than the other one. Chen, Egesdal, Pycia and Yenmez (2016) study
the manipulability of stable matching mechanisms and show that manipulability comparisons
are equivalent to preference comparisons. They find that for any given agent a mechanism
is more manipulable than another if and only if this agent prefers the latter to the former.

The remainder of the paper is organized as follow. In section 2, I formally define the
model of school choice problem and the I-SOSM for a given partition of schools. In the
section 3, I present results. Section 4 concludes. All proofs are in Appendix.

2 The Model

A school choice problem in partitioned markets consist of the following elements:
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• a finite set of students I = {i1, ..., in},

• a finite set of schools S = {s1, ..., sm} that is partitioned into K subsets {Sk}k∈K ,

• a strict priority structure of schools �= (�s)s∈S where �s is a linear order over I ∪{∅}
where ∅ �s i means student i is unacceptable to school s,

• a capacity vector q = (qs1 , ..., qsm) where qs is the number of available seats at school
s,

• a strict preference profile of students P = (Pi)i∈I such that Pi is student i’s preference
relation over S ∪ {∅} where ∅ denotes the option of being unassigned.

The at-least-as-well-as relation Ri is obtained from Pi as follows: sRis
′ if and only if either

sPis
′ or s = s

′ .
I denote the set of all preference relations over S ∪ {∅} by P . Given Pi ∈ P , I denote

its restriction to Sk ∪ {∅} by P k
i . For each k ∈ K, Pk is the set of preference relations over

Sk ∪ {∅}.
For each i ∈ I, U(Pi, s) is the weak upper contour set of Pi at s ∈ S ∪ {∅} and U(Pi, s)

is the strict upper contour set of Pi at s ∈ S ∪ {∅}. That is,

U(Pi, s) = {s′ | s′Ris}, and U(Pi, s) = {s′ | s′Pis}.

For each k ∈ K and each s ∈ Sk ∪ {∅}, I define U(P k
i , s) and U(P k

i , s) similarly.
The admission policy of each school s ∈ S is represented by a choice rule Cs : 2I×{qs} →

2I which maps each nonempty set J ⊆ I of students to a subset Cs(J ; qs) ⊆ J such that
| Cs(J ; qs) |≤ qs. I assume that for each school s ∈ S, Cs(·; qs) is responsive to the priority
ranking �s, i.e., for each J ⊆ I, Cs(J ; qs) is obtained by choosing the highest-priority
acceptable students in J until qs students are chosen or no acceptable student is left.

A matching µ : I −→ S ∪ {∅} is a function such that for each s ∈ S, | µ−1(s) |≤ qs.
From now on, I will omit the superscript ”− 1” and use µ(s) to mean µ−1(s). The set of all
matchings areM.

A matching µ Pareto dominates matching ν if µ(i)Riν(i) for all i ∈ I and µ(i)Piυ(i)

for some i ∈ I. A matching is Pareto efficient if it is not Pareto dominated by any other
matching.

A matching µ is individually rational at P ∈ P if for each i ∈ I, µ(i)Ri∅. That is,
no student is assigned to a school that she finds worse than being unassigned. A matching
µ is non−wasteful at P ∈ P if there does not exist a student i ∈ I and a school s ∈ S
such that sPiµ(i) and | µ(s) |< qs. That is, a seat is wasted if it is left empty despite there
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being a student who prefers it to what she is matched to. A matching µ is fair at P ∈ P if
for all i ∈ I and s ∈ S such that sPiµ(i), for each j ∈ µ(s), j �s i. That is, priorities are
respected. A matching is stable if it is individually rational, non-wasteful and fair.

A mechanism ϕ is a function that maps preference profiles to matchings. The matching
under ϕ at preference profile P is denoted by ϕ(P ) and student i’s match is denoted by
ϕi(P ) for each i ∈ I.

A mechanism ϕ is individually rational (non−wasteful) [fair] if ϕ(P ) is an individ-
ually rational (non-wasteful) [fair] matching for all P ∈ P |I|.

A mechanism ϕ is said to be strategy proof if there does not exist a preference profile
P , an agent i ∈ I, and preference P ′

i of agent i such that

ϕi(P
′

i , P−i)Piϕi(P ).

That is, no student has an incentive to misreport her preferences under the mechanism.
As this paper analyzes the effect of partition structure of schools on welfare of students

as well as the incentives they face under the iterative version of the student-optimal sta-
ble mechanism (SOSM), it is useful to start with considering the case with no partitioning
of schools first. Gale and Shapley (1962) shows that there exists a stable (i.e., individ-
ually rational, non-wasteful and fair) matching for every problem by using the following
student− proposing deferred acceptance algorithm (SPDA):

• Step 1: Each student applies to her top choice school. Each school rejects the lowest-
ranking students in excess of its capacity and all unacceptable students among those
who applied to it, keeping the rest of the students temporarily (so students not rejected
at this step may be rejected in later steps).

• Step k (k≥ 2): Each student who was rejected in Step (k-1) applies to her next highest
choice (if any). Each school considers these students and students who are temporar-
ily held from the previous step together, and rejects the lowest-ranking students in
excess of its capacity and all unacceptable students, keeping the rest of the students
temporarily.

The algorithm terminates at a step in which no rejection occurs. The algorithm always
terminates in a finite number of steps. Gale and Shapley (1962) show that the resulting
matching is stable. The SOSM is strategy proof for students (Dubins and Freedman, 1981;
Roth, 1982). The outcome of the SPDA is the student-optimal stable matching that every
student likes at least as well as any other stable matching.
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2.1 The Iterative Student Optimal Stable Mechanism (I-SOSM)

For each k ∈ K, the procedure the kth group of schools, Sk, uses to match students to schools
in Sk takes as an input students’ preferences over Sk and schools’ priorities and returns a
match inMk. This defines an Sk − rule.

When each group of schools is matched to students by using its own rule, each student
may be matched to more than one school. Then, let each such student to be matched her
favorite among them. For a set of matchingsM′ ⊂ M and a profile of student preferences
P ∈ P , the “combination” ofM′ at P , which is denote by C(M′

, P ), is f : I → S ∪{∅} such
that for each i ∈ I, f(i) is the most favorite school of i among those she is matched to by
matches inM′ .

For each k ∈ K, let ψk−SO be the student-optimal stable Sk − rule. Define ϕT−SO by
setting for each P ∈ P , ϕT−SO(P ) = µT where µT is computed as follows:

• For each i ∈ I, µ0(i) = ∅,

• For each t ∈ {1, ..., T}, (Sti )
k =

 U(P k
i , µ

k
t−1(i)) if µt−1(i) = µkt−1(i)

U(P k
i , µ

k
t−1(i)) if µt−1(i) 6= µkt−1(i)

and (P t
i )
k =

Pi |(St
i )k ,

• For each k ∈ K, µkt ≡ ψk−SO((P t)k), and µt ≡ C({µkt }k∈K , P ).

An interpretation of this computation is as follows: For each i ∈ I, for each k ∈ K, her
preference P k

i is generated from her original preference Pi. Then, for each group of schools,
the SPDA outcome is computed. If a student receives more than one school assignment from
the matches in different group of schools, she is given the most preferred one according to
her original preference Pi. This is the initial match. Each group of schools computes the
re-match in the following way:

1. If a student is held by a school in this group, her preferences over this group are
“truncated” at the school which was offered to her. That is, every other school that
she finds worse than what she has been offered is considered unacceptable. If a student
turned down the school offered by this group, her preferences over this group are
truncated above the school that was offered to her. That is, the school that was offered
to her and every school worse than it is deemed as unacceptable.

2. The group “re-matches” using the SOSM restricted to that group for the truncated
student preferences.

3. Groups re-match until no student is matched to more than one school.
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This process yields an individually rational, non-wasteful and fair match if it is iterated
sufficiently many times. If it is iterated a few times only, the resulting matching is indi-
vidually rational and fair, but might be wasteful. The nice property of this process is that
increasing the number of iterations leads to Pareto improvements. In fact, fewer students
are unmatched as the number of iterations increase.

3 Results

I fix I, S, q = (qs)s∈S, and �= (�s)s∈S and let school partition structure to vary. A problem
is denoted by a pair (α, P ) where α is a school partition and P is a preference profile of
students. Let Q be the set of all partitions of S. Let F l : Q×P |I| −→M be a mapping
where the outcome F l(α;P ) is computed by iterating the I-SOSM l times under school
partition α at student preference profile P .

Definition 1. A partition α = {S1, ..., SK} of the set S is finer than partition β =

{S̃1, ..., S̃L} of the same set S, if every element of the partition α is a subset of some el-
ement of partition β, i.e., for all i ∈ {1, ...K} there exist some j ∈ {1, ..., L} such that
Si ⊆ S̃j.

This “finer-than” relation on the set of partitions of S is a partial order. Each set of
elements has a least upper bound and a greatest lower bound, so that it forms a lattice. For
a set of schools S = {s1, ..., sm}, the partition {{s1}, {s2}, ..., {sm}} is the finest partition of
S and the partition {{s1, ..., sm}} is the coarsest partition of S.

Fact 1. With the finest partition, given a profile of student preferences P , the iterative
student proposing deferred acceptance outcome is equivalent to the outcome of the school
proposing deferred acceptance outcome under the coarsest partition at P .

I-SOSM achieves the extremal matchings under the finest and coarsest school partitions,
respectively. Under the coarsest partition it finds the student optimal stable matching when
iterated only once. However, under the finest partition it finds the school optimal stable
matching of the unified market when iterated sufficiently many times. For partitions other
than finest and coarsest ones I-SOSM may find stable matchings which are not extremal
ones when iterated sufficiently many times.

3.1 Welfare comparison

For a given student preference profile P , let L be the maximum number of iterations needed
for the iterative student-proposing deferred acceptance algorithm to find individually ratio-
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nal, non-wasteful and fair matching (i.e., stable matching) at P . Manjunath and Turhan
(2016) prove the existence of such a finite integer. If l = 1, i.e., school groups match stu-
dents to their respective schools by using the student-optimal stable mechanism but do not
re-match again after students pick which offer to accept, then the resulting matching under
a school partition Pareto dominates the resulting matching under a finer school partition.3

Theorem 1. Given two school partitions α and β such that α is finer than β, F 1(β;P )RSF
1(α;P )

for every problem P ∈ P.

Next, I show that students cannot gain by misreporting under this rule when l = 1.
Hence, the Pareto comparison in Theorem 1 is robust.

Theorem 2. For any given partition α ∈ Q, F 1(·;α) is strategy proof.

For a given preference profile P ∈ P |I|, if we consider two different school partitions
where one is finer than another one and iterate the iterative student-proposing deferred
acceptance algorithm same number of rounds under both partitions, then the outcome of the
iterative student-proposing deferred acceptance algorithm under the coarser partition Pareto
dominates the outcome of the iterative student-proposing deferred acceptance algorithm
under the finer partition. The Pareto comparison result for l = 1 can be generalized for any
arbitrary number of iteration. I formally state this as follows:

Theorem 3. Given two school partitions α and β such that α is finer than β, F l(P ; β)RSF
l(P ;α)

for every problem P ∈ P and every l ≥ 1.

The direct corollary of Theorem 3 is that if iterated sufficiently many times under school
partitions α and β, where the former one is finer than the latter, outcomes of two stable rules
can be compared in the Pareto sense. Let F (P ;α) and F (P ; β) be two individually rational,
fair and non-wasteful (i.e., stable) matchings at P ∈ P |I| computed through iterative student
proposing deferred acceptance under school partitions α and β, respectively.

Corollary 1. Given two school partitions α and β such that α is finer than β, F (P ; β)RSF (P ;α)

for every problem P ∈ P.

Corollary 1 has the following interesting interpretation: School partitions form a lattice
with respect to “finer than” relation. The set of stable matchings forms a lattice with respect
to common student preferences. One can define a mapping from the set of all possible school
partitions in to the set of all stable matchings in a way that given a school partition I-SOSM

3Our Theorem 1 implies Theorem 1 of Doğan and Yenmez (2017). Their Theorem 1 is a Pareto comparison
result between the coarsest school partition (they call it “unified enrollment system”) and a given finer school
partition.

9



(iterated sufficiently many times) maps it to a stable matching. Corollary 1 states that this
mapping is weakly monotonic in the following sense. When two partitions, one is finer than
the other one, are considered the stable matching I-SOSM finds under the coarser one is
weakly preferred by every student than the one I-SOSM finds under the finer one.

When school groups iterate the SOSM more than once Pareto comparison result in The-
orem 3 need not to be robust because, then, strategy proofness is lost. To see it consider the
following example:

Example 1. Let I = {i, j} and S = {a, b} where S1 = {a} and S2 = {b} with qa = qb = 1.
Student preferences and school priorities are as follows:

Pi : a− b− ∅ �a: j − i
Pj : b− a− ∅ �b: i− j

The outcome of the iterative student-proposing deferred acceptance algorithm is

 i j

b a


since both students apply to both schools and schools pick their favorite students. Now con-
sider the following preference profile where student j misreport his preference:

Pi : a− b− ∅ �a: j − i
P̃j : b− ∅ �b: i− j

In the first iteration both students apply to school b and only student i applies to school
a. Student i gets both school a and school b. But, he chooses school a and declines school
b. Then, his preference is truncated at S2 in a way that he does not find any school in S2

acceptable. In the second iteration, the only student who apply to school b is student j and
he receives it. Then, the outcome of student proposing deferred acceptance iterated twice is i j

a b

. Hence, student j is better off by misreporting.

3.2 Incentive comparison

In this section, I fix I, S, q = (qs)s∈S, and �= (�s)s∈S. Therefore, a pair (α, P ) defines a
problem. As seen in Example 1 given a school partition α, an I-SOSM mechanism F l(·;α)

need not be strategy proof. In this section, I analyze the effect of partition structure of
schools on incentives that students face under I-SOSM.

Definition 2. A mechanism ϕ is manipulable by student i at problem P if there exists a
preference P ′

i ∈ Pi for this student such that ϕi(P
′
i , P−i)Piϕi(P ).
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To compare two manipulable mechanisms we borrow the following definitions from Pathak
and Sönmez (2013). This is an agent-by-agent manipulability comparison of two manipulable
mechanisms.

Definition 3. A mechanism ψ is as strongly manipulable as mechanism φ if for any
profile P at which mechanism φ is manipulable ψ is manipulable by any player who can
manipulate ϕ.

Manipulability comparisons of two stable I-SOSMs, one is under finer school partition
than another, are equivalent to partition comparisons: whenever a student is able to manipu-
late a stable I-SOSM under a certain school partition, the same student is able to manipulate
it under a finer school partition.

Theorem 4. Let F (·;α) and F (·; β) be iterative-SOSMs under partitions α and β, respec-
tively, where α is finer than β. Then, F (α; ·) is as strongly manipulable as F (β; ·).

3.3 How to manipulate I-SOSM

To study manipulations under I-SOSM, one way to begin may be to consider all possi-
ble strategies of a particular student. Fortunately, there is a type of manipulation that is
exhaustive for I-SOSM mechanism.

Definition 4. (Kojima and Pathak, 2009) A dropping strategy of a student i ∈ I is an
ordered listP ′

i obtained from Pi by removing some acceptable schools, i.e., not necessarily a
tail of least preferred schools. Formally, for a student i with preferences Pi over schools and
remaining unmatched, P ′

i is a dropping strategy if for any schools s, s′ ∈ S, sR′
is

′
R

′
i∅ implies

sRis
′
Ri∅.

The last result states that dropping strategies are exhaustive under I-SOSM.

Theorem 5. Given a school partition α consider an I-SOSM F l(·;α) for some l ≥ 2. Fix
preferences of students other than student i. Suppose the mechanism produces µ under some
report of student i. Then, there exists a dropping strategy that produces a matching that
student i weakly prefers to µ according to her true preferences.

Kojima and Pathak (2009) present a similar results for stable mechanisms. Notice that
I-SOSM F l(·;α) for some l ≥ 2 need not be stable. It might be wasteful. Hence, Theorem 5
is not implied by their result.
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4 Conclusion

Building on Manjunath and Turhan (2016), this papers studies the effects of partition struc-
tures of schools under the I-SOSM mechanism which finds an individually rational and fair
assignment for any number of iteration and also non-wasteful assignment if iterated suffi-
ciently many times. I find that, for a given problem, as the schools partition gets finer,
under the I-SOSM students get weakly worse off. Also, as the school partition gets finer
I-SOSM becomes at least as manipulable when iterated sufficiently many times to find a sta-
ble outcome. These results suggest that policy makers should prevent schools to form finer
partitions if stability is desirable for them. I also find that dropping strategies for students
are exhaustive under I-SOSM for any number of iteration.

5 Appendix

Proof. (Theorem 1) Consider two school partitions γ1 ={S̃1, S̄1, S2..., SK} and γ2 = {S1, S2, ..., SK}
where S̃1 ⊂ S1 and S̄1 ⊂ S1 and S̃1 ∪ S̄1 = S1 so that partitions γ1 and γ2 have K − 1

same sets S2,...,SK but set of schools S1 in partition γ2 is divided into two disjoint sets
S̃1 and S̄1 in partition γ1. Given a preference profile P , students submit the same prefer-
ence relations to school groups S2, S3,...,SK , namely, P 2, P 3,..., PK . Then, ψk−SO yields
the same matchings under partitions γ1 and γ2, i.e., ψk−SO(γ1;P ) = ψk−SO(γ2;P ) for all
k = 2, 3, ..., K. Students submit the preference profile P 1 to the school group S1 under
partition structure γ2. Since both S̃1 and S̄1 are subsets of S1, the preference relations, for
each student, submitted to groups S̃1 and S̄1, P 1 |S̃1 (P 1 restricted to S̃1) and P 1 |S̄1 (P 1

restricted to S̄1) agree with the preference relation submitted to group S1, P 1. Then, by the
Theorem 2 of Gale and Sotomayor (1985), we have both ψ1−SO(P 1)Riψ

1−SO(P 1 |S̃1) and
ψ1−SO(P 1)Riψ

1−SO(P 1 |S̄1). Then, for each student i ∈ I, we have:

C({ψ1−SO(P 1), ..., ψK−SO(PK)};P )RiC({ψ1−SO(P 1 |S̃1), ψ1−SO(P 1 |S̄1), ψ2−SO(P 2), ..., ψK−SO(PK)};P )

Given two partitions α and β such that α is finer than β, we can construct a sequence
of partitions γ1, γ2,...,γb such that α = γ1, β = γb and two consecutive partitions γt and
γt+1 are such that only one set in γt+1 is divided into two disjoint subsets in order to obtain
the partition γt. Applying the procedure above gives us each student gets weakly better off
under partition β than under partition α.

Proof. (Theorem 2): Let α be {S1, ..., SK}. The outcome is C({ψ1−SO(P 1), ..., ψK−SO(PK)};P )

where each group of schools k ∈ K uses student-optimal stable rule, ψk−SO, for a given pref-
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erence profile P . Since each student knows that there will be no more iteration and ψk−SO

is strategy proof it is weakly dominant strategy for each student to report P k truthfully to
each Sk. Then, for each student i ∈ I, given the schools (or no school option) he is offered by
each group of schools ψ1−SO

i (P 1),...,ψK−SOi (PK), student i will pick the best one of them ac-
cording to her true preference. Hence, for each student i ∈ I, it is weakly dominant strategy
to report Pi truthfully.

Towards the proof of Theorem 3 we first prove three lemmas. The first one nests Lemma
1 of Doğan and Yenmez (2017) where the authors compare the coarsest partition with a given
finer partition.

Lemma 1. Consider the case where l = 1. Let β be a coarser school partition than α. The
set of students who has applied to a school at or before Step t of the student-proposing deferred
acceptance algorithm (SPDAA) under partition β is a subset of those who have applied under
partition α, for every t.

Proof. Take a school s ∈ S. Let s ∈ S1 under partition β and s ∈ S̃1 under partition α,
without loss of generality. Notice that S̃1 ⊆ S1. Let I tβ(s) and I tα(s) be the set of students
who has applied to school s at or before Step t of the student-proposing deferred acceptance
algorithm (DAA) under partition β and partition α, respectively. We want to show that
I tβ(s) ⊆ I tα(s). We prove this claim by mathematical induction on t.

When t = 1, in every partition, each student applies to his top overall ranked school,
under both partition α and β. That is, I1

β(s) = {i | sPis
′
, ∀s′ ∈ S1 s.t. s 6= s

′} and
I1
α(s) = {i | sPis

′
, ∀s′ ∈ S̃1 s.t. s 6= s

′}. Clearly, I1
β(s) ⊆ I1

α(s) because if s is a top choice
for a student under partition β, then it must be a top choice at some school group under
partition α for the same student.

Assume that the claim holds true for every number smaller than t. We now show it for
t. Let j be a student who has applied to school s exactly at Step t under partition β. That
is, j ∈ I tβ(s) \ I t−1

β (s). We claim that j ∈ I tα(s). If school s is highest ranked among schools
in S̃1 with respect to Pj |S̃1 then j ∈ I1

α(s) which implies j ∈ I tα(s). Otherwise, if school s
is not the highest-ranked school in S̃1, there exists a school s′ ∈ S̃1 which is ranked right
above s among schools in S̃1 with respect to Pj |S̃1 . Since j ∈ I tβ(s) \ I t−1

β (s) school s′ must
have rejected student j at Step t − 1 or before under partition β. That means j ∈ I t−1

β (s
′
)

and j /∈ Cs′ (I t−1
β (s

′
); qs′ ). By the inductive assumption we have j ∈ I t−1

α (s
′
). Since Cs′ is

responsive we have j /∈ Cs′ (I t−1
α (s

′
); qs′ ). Therefore, student j applies to school s at Step t

or before under partition α. So, j ∈ I tα(s).
We show that every student in I tβ(s) \ I t−1

β (s) is also in I tα(s). This together with the
inductive assumption that I t−1

β (s) ⊆ I t−1
α (s) imply that I tβ(s) ⊆ I tα(s).
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Lemma 2. Let β be a coarser school partition than α. Suppose student preferences are
truncated as described in Section 2.1 in I-SOSM. Suppose F r(P ; β)RF r(P ;α) for P ∈ P,
for all r = 1, ..., l. Consider any student i ∈ I. If school s ∈ S is still acceptable to student
i with respect to his truncated preference under school partition β at the end of iteration l,
then s must be acceptable to student i ∈ I with respect to his truncated preferences under
partition α at the end of iteration l.

Proof. Consider student i ∈ I. Suppose that school s ∈ S is still acceptable to student i
with respect to his truncated preference under school partition β at the end if iteration t.
That means student i obtains either school s or a school which is strictly worse than school
s in Sk where s ∈ Sk with respect to school partition β. From S̃r, where s ∈ S̃r with respect
to partition α, at the end of the deferred acceptance student i gets either the same school
or a strictly worse one compared to what he gets in Sk under partition β with respect to his
preference relation Pi. Hence if school s ∈ S survives the truncation under partition β, it
must survive truncation under partition α. Thus, every school which is still acceptable after
the truncation under partition β must be acceptable after truncation under partition α.

Lemma 3. Let β be a coarser school partition than α. Consider iteration l of I-SOSM.
Suppose that for every student any school which is still acceptable, i.e., survives truncation,
at the end of iteration (l − 1) under partition β is also acceptable, i.e., survives truncation,
at the end of iteration (l − 1) under partition α. Then, in iteration l, the set of students
who has applied to a school at or before Step t of the SPDAA under partition β is a subset
of those who have applied under partition α, for every t.

Proof. For each student i ∈ I weakly more schools at the low-tail of preferences for each
group of schools are truncated at the end of the first iteration (l− 1) under partition β than
under partition α. Consider a school s ∈ Sk under partition β and suppose that s ∈ S̃m

under partition α. Note that S̃m ⊆ Sk. Consider the first step of the DA in the second
iteration l. Each student applies to his/her top school in each school group under partition
β. If a school is student i’s top choice under partition β for some group of schools, then it
must be his/her top choice school under partition α for some group of school under partition
α, as well. Then, it follows that I1

β(s) ⊆ I1
α(s) where I1

β(s) and I1
α(s) are the sets of students

who applied to school s in the first step of the DA in iteration l.
Suppose that up to Step t, we have Ixβ (s) ⊆ Ixα(s) for every x = 1, ..., t− 1 and for every

s ∈ S, where Ixβ (s) and Ixα(s) are the sets of students who have applied to school sat or
before Step x. Now, we need to show that I tβ(s) ⊆ I tα(s).

Let i be a student who has applied to school s at Step t under partition β, i.e., i ∈
I tβ(s) \ I t−1

β (s). We claim that i ∈ I tα(s). If s is the highest-ranked school among S̃m under
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partition α with respect to her truncated preferences at the end of Step (t−1) then i ∈ I1
α(s)

which implies that i ∈ I tα(s). Otherwise, if s is not the highest-ranked school with respect
to her truncated preferences by the end of iteration (l− 1), then there exists another school
s̃ ∈ S̃m which is ranked right above s among schools in S̃m. Since i ∈ I tβ(s)\ I t−1

β (s) school s̃
must have rejected student i at Step (t−1) or before under partition β, that is i ∈ I t−1

β (s̃) and
i /∈ C s̃(I t−1

β (s̃); qs̃). By the inductive assumption, we have i ∈ I t−1
α (s̃) and by responsiveness

we have i /∈ C s̃(I t−1
α (s̃); qs̃). Therefore i applies to school s at Step t or before under partition

α, so i ∈ I tα(s).
We have shown that every student in I tβ(s)\I t−1

β (s) is also in I tα(s). This and mathematical
induction hypothesis that I t−1

β (s) ⊆ I t−1
α (s) together imply I tβ(s) ⊆ I tα(s).

Proof. (Theorem 3): Let β be a coarser school partition than α. In Theorem 1 we already
show F 1(P ; β)RF 1(P ;α) for a given P ∈ P |I|. Then, by Lemma 2, for every student any
school which survives truncation by the end of iteration 1 under partition β also survives
truncation by the end of iteration 1 under partition α. Then, by Lemma 3, the set of students
who has applied to a school at or before Step t of the SPDAA under partition β is a subset of
those who have applied under partition α, for every t. This, implies that F 2(P ; β)RF 2(P ;α).
By Lemma 2, for every student any school which survives truncation by the end of iteration
2 under partition β also survives truncation by the end of iteration 2 under partition α.
With a similar argument as before, we have F 3(P ; β)RF 3(P ;α). Proceeding this way, we
reach F l(P ; β)RF l(P ;α) for a given preference profile P ∈ P .

Proof. (Theorem 4): Suppose that school partitions α and β are such that β is coarser than
α. By Manjunath and Turhan (2016), for any preference profile P , F (P ;α) and F (P ; β)

are both stable matchings. By Theorem 3 in this paper, for every preference profile P and
for every student i ∈ I we have Fi(P ; β)RiF (P ;α). Then, by either Lemma 1 of Pathak and
Sönmez (2013) or Theorem 1 of Chen, Egesdal, Pycia and Yenmez (2016) we have that for
every student i ∈ I, mechanism F (·;α) is as manipulable as mechanism F (·; β).

Proof. (Theorem 5): Formal statement of Theorem 5: Fix a school partition α and consider
the mechanism F l(·;α) for some l > 1. Fix preference profile P . For some report of student
i, P̃i, suppose that F l

i ((P̃i, P−i);α) = µ. Then, there exists a dropping strategy P ′
i such that

F l((P
′
i , P−i);α)Riµ.

Given a school partition α and a preference profile P , suppose that for a report P̃i of
student i we have such that F l((P̃i, P−i);α) = µ. Call µ(i) = s and s ∈ Sk for some k under
partition α. Construct P ′

i by listing only school s acceptable and reporting every other school
in Pi as unacceptable. Let P ′

= (P
′
i , P−i). When student i reports P ′

i she does not apply
any school in school groups other than group k. In the first iteration of the SOSM, by the
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population monotonicity4 of student proposing deferred acceptance algorithm (Ehlers and
Klaus, 2016), every student gets weakly better assignment in school groups other than Sk.
Moreover, since student proposing deferred acceptance algorithm is IR monotonic5 every
student gets weakly better assignment in school group Sk because student i lists only school
s as acceptable. If student i receives school s when he reports P̃i in the first iteration of
the SOSM, then when he reports P ′

i she must receive it in the first iteration, as well. If she
receives school s in the second iteration of the SOSM when she reports P̃i, she receives it in
the second iteration of the SOSM when she reports P ′

i because after the truncation at the
end of the first iteration of the SOSM weakly less number of student will apply schools in
group Sk. This holds for any k = 1, ..., l where k is the number of iteration at which student
i receives school s when she reports P̃i. Because for any k the set of students who apply to
school s in the course of the student proposing DA when i reports P ′

i is a subset of the set
of students who apply to school s when i reports P̃i.

4This property was first introduced by Thomson (1983) in a different framework.
5For IR monotonicity property see Kojima and Manea (2010).
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